Antonella Gervasini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/729973/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microcalorimetric study of the acidity and basicity of metal oxide surfaces. The Journal of Physical Chemistry, 1990, 94, 6371-6379.	2.9	457
2	Acidity and basicity of metal oxide surfaces II. Determination by catalytic decomposition of isopropanol. Journal of Catalysis, 1991, 131, 190-198.	6.2	255
3	Total Oxidation of Formaldehyde over MnO _{<i>x</i>} -CeO ₂ Catalysts: The Effect of Acid Treatment. ACS Catalysis, 2015, 5, 2260-2269.	11.2	199
4	Niobic acid and niobium phosphate as highly acidic viable catalysts in aqueous medium: Fructose dehydration reaction. Catalysis Today, 2006, 118, 373-378.	4.4	191
5	Title is missing!. Catalysis Letters, 1997, 43, 219-228.	2.6	176
6	Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR). Applied Catalysis A: General, 2005, 281, 199-205.	4.3	140
7	Dependence of Copper Species on the Nature of the Support for Dispersed CuO Catalysts. Journal of Physical Chemistry B, 2006, 110, 7851-7861.	2.6	110
8	Optimization of Tailoring of CuOxSpecies of Silica Alumina Supported Catalysts for the Selective Catalytic Reduction of NOx. Journal of Physical Chemistry B, 2003, 107, 5168-5176.	2.6	106
9	Structural, textural and acid–base properties of carbonate-containing hydroxyapatites. Journal of Materials Chemistry A, 2014, 2, 11073-11090.	10.3	102
10	VOC removal by synergic effect of combustion catalyst and ozone. Catalysis Today, 1996, 29, 449-455.	4.4	97
11	Insight into the properties of Fe oxide present in high concentrations on mesoporous silica. Journal of Catalysis, 2009, 262, 224-234.	6.2	91
12	Unraveling the Role of Low Coordination Sites in a Cu Metal Nanoparticle: A Step toward the Selective Synthesis of Second Generation Biofuels. ACS Catalysis, 2014, 4, 2818-2826.	11.2	85
13	XPS Study of the Adsorption of SO2and NH3over Supported Tin Dioxide Catalysts Used in de-NOx Catalytic Reaction. Journal of Physical Chemistry B, 2001, 105, 10316-10325.	2.6	83
14	Catalytic activity of dispersed CuO phases towards nitrogen oxides (N2O, NO, and NO2). Applied Catalysis B: Environmental, 2006, 62, 336-344.	20.2	83
15	Intrinsic and Effective Acidity Study of Niobic Acid and Niobium Phosphate by a Multitechnique Approach. Chemistry of Materials, 2005, 17, 6128-6136.	6.7	82
16	Absence of expected side-reactions in the dehydration reaction of fructose to HMF in water over niobic acid catalyst. Catalysis Communications, 2011, 12, 1122-1126.	3.3	78
17	Cooperative action of BrÃ,nsted and Lewis acid sites of niobium phosphate catalysts for cellobiose conversion in water. Applied Catalysis B: Environmental, 2016, 193, 93-102.	20.2	77
18	Gold on Carbon: Influence of Support Properties on Catalyst Activity in Liquid-Phase Oxidation. Catalysis Letters, 2003, 85, 91-96.	2.6	76

#	Article	IF	CITATIONS
19	In-depth study of the mechanism of heavy metal trapping on the surface of hydroxyapatite. Applied Surface Science, 2019, 475, 397-409.	6.1	74
20	Dispersed NbO _{<i>x</i>} Catalytic Phases in Silica Matrixes: Influence of Niobium Concentration and Preparative Route. Journal of Physical Chemistry C, 2008, 112, 14064-14074.	3.1	73
21	Investigation of the WO3/ZrO2 surface acidic properties for the aqueous hydrolysis of cellobiose. Catalysis Communications, 2012, 19, 119-126.	3.3	70
22	Characterization of the textural properties of metal loaded ZSM-5 zeolites. Applied Catalysis A: General, 1999, 180, 71-82.	4.3	69
23	Acidic Character of Metal-Loaded Amorphous and Crystalline Silicaâ ^{~,} Aluminas Determined by XPS and Adsorption Calorimetry. Journal of Physical Chemistry B, 1999, 103, 7195-7205.	2.6	65
24	Microcalorimetric and Catalytic Studies of the Acidic Character of Modified Metal Oxide Surfaces. 1. Doping Ions on Alumina, Magnesia, and Silica. The Journal of Physical Chemistry, 1995, 99, 5117-5125.	2.9	63
25	Characterization of copper-exchanged ZSM-5 and ETS-10 catalysts with low and high degrees of exchange. Microporous and Mesoporous Materials, 2000, 35-36, 457-469.	4.4	63
26	Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas. Applied Catalysis B: Environmental, 2000, 28, 175-185.	20.2	63
27	Support Effects on de-NOx Catalytic Properties of Supported Tin Oxides. Journal of Catalysis, 2000, 195, 140-150.	6.2	62
28	Synthesis and comparative characterization of Al, B, Ga, and Fe containing Nu-1-type zeolitic framework. Zeolites, 1990, 10, 642-649.	0.5	57
29	Energy Distribution of Surface Acid Sites of Metal Oxides. Journal of Catalysis, 1994, 150, 274-283.	6.2	56
30	Surface characteristics and activity in selective oxidation of -xylene of supported VO catalysts prepared by standard impregnation and atomic layer deposition. Catalysis Today, 2004, 96, 187-194.	4.4	55
31	Study of the influence of the In2O3 loading on γ-alumina for the development of de-NOx catalysts. Journal of Catalysis, 2005, 234, 421-430.	6.2	55
32	Polystyrene thermodegradation. 2. Kinetics of formation of volatile products. Industrial & Engineering Chemistry Research, 1991, 30, 1624-1629.	3.7	53
33	Hydrolysis of disaccharides over solid acid catalysts under green conditions. Carbohydrate Research, 2012, 347, 23-31.	2.3	53
34	Tailoring the structural and morphological properties of hydroxyapatite materials to enhance the capture efficiency towards copper(<scp>ii</scp>) and lead(<scp>ii</scp>) ions. New Journal of Chemistry, 2018, 42, 4520-4530.	2.8	51
35	An In-depth Study of Supported In2O3Catalysts for the Selective Catalytic Reduction of NOx:Â The Influence of the Oxide Support. Journal of Physical Chemistry B, 2006, 110, 240-249.	2.6	49
36	Silica–niobia oxides as viable acid catalysts in water: Effective vs. intrinsic acidity. Catalysis Today, 2010, 152, 42-47.	4.4	49

#	Article	IF	CITATIONS
37	Exploitment of niobium oxide effective acidity for xylose dehydration to furfural. Catalysis Today, 2015, 254, 90-98.	4.4	48
38	Calorimetric determination of the acidic character of amorphous and crystalline aluminosilicates. Thermochimica Acta, 2004, 420, 127-134.	2.7	45
39	Is BN an appropriate support for metal oxide catalysts?. Applied Catalysis A: General, 2007, 325, 227-236.	4.3	43
40	Microcalorimetric investigation of the acidity and basicity of metal oxides. Journal of Thermal Analysis, 1991, 37, 1737-1744.	0.6	41
41	A new, Fe based, heterogeneous Lewis acid: Selective isomerization of α-pinene oxide. Catalysis Communications, 2008, 9, 1125-1127.	3.3	41
42	Bulk and Surface Properties of Dispersed CuO Phases in Relation with Activity of NO x Reduction. Catalysis Letters, 2004, 98, 187-194.	2.6	40
43	Nanodispersed Fe Oxide Supported Catalysts with Tuned Properties. Journal of Physical Chemistry C, 2008, 112, 4635-4642.	3.1	40
44	Preparation of highly dispersed CuO catalysts on oxide supports for de-NO reactions. Ultrasonics Sonochemistry, 2003, 10, 61-64.	8.2	39
45	Influence of the Brönsted and Lewis acid sites on the catalytic activity and selectivity of Fe/MCM-41 system. Applied Catalysis A: General, 2012, 435-436, 187-196.	4.3	39
46	Influence of preparation methods and structure of niobium oxide-based catalysts in the epoxidation reaction. Catalysis Today, 2015, 254, 99-103.	4.4	39
47	Studies of direct decomposition and reduction of nitrogen oxide with ethylene by supported noble metal catalysts. Applied Catalysis B: Environmental, 1999, 22, 201-213.	20.2	38
48	Microcalorimetric Study of the Acidic Character of Modified Metal Oxide Surfaces. Influence of the Loading Amount on Alumina, Magnesia, and Silica. Langmuir, 1996, 12, 5356-5364.	3.5	36
49	Chiral Hybrid Inorganic–Organic Materials: Synthesis, Characterization, and Application in Stereoselective Organocatalytic Cycloadditions. Journal of Organic Chemistry, 2013, 78, 11326-11334.	3.2	35
50	Comparative performance of copper and iron functionalized hydroxyapatite catalysts in NH3-SCR. Catalysis Communications, 2019, 123, 79-85.	3.3	34
51	Experimental and Modelization Approach in the Study of Acid-Site Energy Distribution by Base Desorption. Part I:Â Modified Silica Surfaces. Journal of Physical Chemistry B, 2005, 109, 1528-1536.	2.6	31
52	Influence of the Preparation Method on the Surface Characteristics and Activity of Boron-Nitride-Supported Noble Metal Catalysts. Journal of Physical Chemistry B, 2006, 110, 12572-12580.	2.6	30
53	Nickel and cobalt adsorption on hydroxyapatite: a study for the de-metalation of electronic industrial wastewaters. Adsorption, 2019, 25, 649-660.	3.0	30
54	Finely Iron-Dispersed Particles on Î ² Zeolite from Solvated Iron Atoms: Promising Catalysts for NH ₃ -SCO. Journal of Physical Chemistry C, 2019, 123, 11723-11733.	3.1	30

#	Article	IF	CITATIONS
55	Supported Binary Oxide Catalysts Containing CuO Coupled with Ga2O3and SnO2. Chemistry of Materials, 2006, 18, 3641-3650.	6.7	29
56	Polystyrene thermodegradation. III. Effect of acidic catalysts on radical formation and volatile product distribution. Applied Catalysis A: General, 1995, 127, 139-155.	4.3	27
57	Characterisation of BN-supported palladium oxide catalyst used for hydrocarbon oxidation. Applied Catalysis A: General, 2007, 316, 250-258.	4.3	27
58	Improving stability of Nb2O5 catalyst in fructose dehydration reaction in water solvent by ion-doping. Catalysis Today, 2012, 192, 89-95.	4.4	26
59	Catalytic technology assisted with ionization/ozonization phase for the abatement of volatile organic compounds. Catalysis Today, 2000, 60, 129-138.	4.4	25
60	Kinetics of reduction of supported nanoparticles of iron oxide. Journal of Thermal Analysis and Calorimetry, 2008, 91, 93-100.	3.6	25
61	Focus on the catalytic performances of Cu-functionalized hydroxyapatites in NH3-SCR reaction. Applied Catalysis A: General, 2018, 563, 43-53.	4.3	25
62	Niobium-Containing Hydroxyapatites as Amphoteric Catalysts: Synthesis, Properties, and Activity. ACS Catalysis, 2014, 4, 469-479.	11.2	24
63	Liquid Phase Direct Synthesis of H ₂ O ₂ : Activity and Selectivity of Pd-Dispersed Phase on Acidic Niobia-Silica Supports. ACS Catalysis, 2017, 7, 4741-4752.	11.2	24
64	Chelation of copper(II) ions by doxorubicin and 4′-epidoxorubicin: ESR evidence for a new complex at high anthracycline/copper molar ratios. Inorganica Chimica Acta, 1987, 136, 81-85.	2.4	23
65	Destruction of carbon tetrachloride in the presence of hydrogen-supplying compounds with ionisation and catalytic oxidation. Applied Catalysis B: Environmental, 2002, 38, 17-28.	20.2	23
66	Characterization and reactivity of group III oxides supported on niobium oxide. Catalysis Today, 2003, 78, 377-386.	4.4	23
67	Surface acidic properties of supported binary oxides containing CuO coupled with Ga2O3 and SnO2 studied by complementary techniques. Applied Catalysis A: General, 2007, 331, 129-137.	4.3	23
68	The stability of niobium-silica catalysts in repeated liquid-phase epoxidation tests: A comparative evaluation of in-framework and grafted mixed oxides. Inorganica Chimica Acta, 2015, 431, 190-196.	2.4	23
69	Effect of Cu deposition method on silico aluminophosphate catalysts in NH 3 -SCR and NH 3 -SCO reactions. Applied Catalysis A: General, 2017, 543, 162-172.	4.3	23
70	Methane combustion over copper chromite catalysts. Catalysis Letters, 1997, 48, 39-46.	2.6	22
71	The role played by different TiO2 features on the photocatalytic degradation of paracetamol. Applied Surface Science, 2017, 424, 198-205.	6.1	22
72	Surface acidity of catalytic solids studied by base desorption: experimental and modelling approaches. Thermochimica Acta, 2005, 434, 42-49.	2.7	21

5

#	Article	IF	CITATIONS
73	Influence of the Chemical Nature of the Support (Niobic Acid and Niobium Phosphate) on the Surface and Catalytic Properties of Supported CuO. Chemistry of Materials, 2007, 19, 1319-1328.	6.7	21
74	Desorption study of NO and O2 on Cu-ZSM-5. Applied Catalysis B: Environmental, 1997, 14, 147-159.	20.2	20
75	Acid-Base Properties of Alumina-Supported M2O3 (M=B, Ga, In) Catalysts. Topics in Catalysis, 2002, 19, 271-281.	2.8	20
76	Determination of Catalyst Surface Acidity in Liquids by a Pulse Liquid Chromatographic Technique. Adsorption Science and Technology, 2005, 23, 739-749.	3.2	20
77	An Environmentally Friendly Nb–P–Si Solid Catalyst for Acid-Demanding Reactions. Journal of Physical Chemistry C, 2017, 121, 17378-17389.	3.1	20
78	Combination of interfacial reduction of hexavalent chromium and trivalent chromium immobilization on tin-functionalized hydroxyapatite materials. Applied Surface Science, 2021, 539, 148227.	6.1	20
79	Acid properties of iron oxide catalysts dispersed on silica–zirconia supports with different Zr content. Applied Catalysis A: General, 2009, 367, 113-121.	4.3	19
80	Toward new low-temperature thermochemical heat storage materials: Investigation of hydration/dehydration behaviors of MgSO4/Hydroxyapatite composite. Solar Energy Materials and Solar Cells, 2022, 240, 111696.	6.2	19
81	Inclusion polymerization in perhydrotriphenylene studied by ESR spectroscopy: Growing chain structure and conformation of methylsubstituted polybutadienes. Journal of Polymer Science Part A, 1986, 24, 815-825.	2.3	18
82	Evidence of formation of radicals in the polystyrene thermodegradation. Journal of Polymer Science Part A, 1989, 27, 3865-3873.	2.3	18
83	Impact of Support Oxide Acidity in Pt-Catalyzed HMF Hydrogenation in Alcoholic Medium. Catalysis Letters, 2017, 147, 345-359.	2.6	18
84	Functionalized Iron Hydroxyapatite as Ecoâ€friendly Catalyst for NH ₃ â€SCR Reaction: Activity and Role of Iron Speciation on the Surface. ChemCatChem, 2020, 12, 1676-1690.	3.7	17
85	Steering Cu-Based CO ₂ RR Electrocatalysts' Selectivity: Effect of Hydroxyapatite Acid/Base Moieties in Promoting Formate Production. ACS Energy Letters, 2022, 7, 2304-2310.	17.4	17
86	Thermogravimetric study of the kinetics of degradation of polypropylene with solid catalysts. Thermochimica Acta, 2001, 379, 51-58.	2.7	16
87	Tuning the sorption ability of hydroxyapatite/carbon composites for the simultaneous remediation of wastewaters containing organic-inorganic pollutants. Journal of Hazardous Materials, 2021, 420, 126656.	12.4	15
88	CuO based catalysts on modified acidic silica supports tested in the de-NO reduction. Ultrasonics Sonochemistry, 2005, 12, 307-312.	8.2	14
89	Influence of the Nb/P ratio of acidic Nb P Si oxides on surface and catalytic properties. Applied Catalysis A: General, 2019, 579, 9-17.	4.3	14
90	Hydrogen adsorption and desorption on alumina supported platinum-multicomponent catalysts with a gas chromatographic pulse technique. Applied Catalysis, 1991, 72, 153-163.	0.8	13

#	Article	IF	CITATIONS
91	Vanadium mixed oxide catalysts for the oxidative coupling of methane. Applied Catalysis A: General, 1992, 83, 235-250.	4.3	13
92	Low-Temperature Catalytic Combustion of Volatile Organic Compounds Using Ozone. ACS Symposium Series, 1994, , 353-369.	0.5	13
93	Optimal experimental procedures in a combined TPR/TPO apparatus. Chemical Engineering and Technology, 1995, 18, 243-247.	1.5	13
94	Solid acids, surface acidity and heterogeneous acid catalysis. Advances in Catalysis, 2020, 67, 1-90.	0.2	13
95	Multitechnique study of the interaction of SO2 with alumina-supported SnO2 catalysts for lean NOx abatement. Surface and Interface Analysis, 2000, 30, 61-64.	1.8	12
96	Combined use of titration calorimetry and spectrofluorimetry for the screening of the acidity of solid catalysts in different liquids. Thermochimica Acta, 2013, 567, 8-14.	2.7	12
97	New Nb-P-Si ternary oxide materials and their use in heterogeneous acid catalysis. Molecular Catalysis, 2018, 458, 280-286.	2.0	12
98	Effect of the K+, Ba2+, and Nd3+ addition to Nb2O5 on intrinsic and effective acidity in relation to biomass reactions. Journal of Catalysis, 2012, 296, 143-155.	6.2	11
99	Environmental Reactions of Air-Quality Protection on Eco-Friendly Iron-Based Catalysts. Catalysts, 2020, 10, 1415.	3.5	11
100	Kinetic study of the carbonyl sulphide synthesis from carbon dioxide and carbon disulphide on alumina catalysts. Applied Catalysis, 1990, 64, 143-159.	0.8	10
101	Copper Site Energy Distribution of de-NOxCatalysts Based on Titanosilicate (ETS-10). Langmuir, 2001, 17, 6938-6945.	3.5	10
102	Hierarchically porous Nb–TiO ₂ nanomaterials for the catalytic transformation of 2-propanol and n-butanol. New Journal of Chemistry, 2014, 38, 1988-1995.	2.8	10
103	Phosphate Enrichment of Niobium-Based Catalytic Surfaces in Relation to Reactions of Carbohydrate Biomass Conversion: The Case Studies of Inulin Hydrolysis and Fructose Dehydration. Catalysts, 2021, 11, 1077.	3.5	10
104	Thermodynamic study of adsorption of NO on copper-based catalysts. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1641-1646.	1.7	9
105	Title is missing!. Catalysis Letters, 2002, 84, 235-244.	2.6	8
106	Destruction of carbon tetrachloride in the presence of hydrogen-supplying compounds with ionisation and catalytic oxidation. Applied Catalysis B: Environmental, 2004, 47, 257-267.	20.2	8
107	Catalytic Transformation of Ethanol with Silicaliteâ€1: Influence of Pretreatments and Conditions on Activity and Selectivity. ChemCatChem, 2010, 2, 1587-1593.	3.7	7
108	A Rational Revisiting of Niobium Oxophosphate Catalysts for Carbohydrate Biomass Reactions. Topics in Catalysis, 2018, 61, 1939-1948.	2.8	7

#	Article	IF	CITATIONS
109	Chloride-free hydrolytic sol–gel synthesis of Nb–P–Si oxides: an approach to solid acid materials. Green Chemistry, 2020, 22, 7140-7151.	9.0	7
110	Optical and spectromagnetical properties of phosphate glasses containing ruthenium and titanium ions. Journal of the Chemical Society Faraday Transactions I, 1987, 83, 705.	1.0	6
111	Polystyrene thermodegradation—IV. Kinetics of radical formation in the presence of solid catalysts. Polymer Degradation and Stability, 1997, 57, 301-306.	5.8	6
112	Infrared Spectroscopic Study of the Acidic Character of Modified Alumina Surfaces. Adsorption Science and Technology, 2003, 21, 721-737.	3.2	6
113	Temperature Programmed Reduction/Oxidation (TPR/TPO) Methods. Springer Series in Materials Science, 2013, , 175-195.	0.6	6
114	A green solvent diverts the hydrogenation of γ–valerolactone to 1,4Â- pentandiol over Cu/SiO2. Molecular Catalysis, 2021, 516, 111936.	2.0	6
115	Properties of surface-modified alumina catalysts of COS synthesis. Surface and Interface Analysis, 1992, 19, 529-532.	1.8	5
116	Tunable acidity in mesoporous carbons for hydrolysis reactions. New Journal of Chemistry, 2020, 44, 5873-5883.	2.8	5
117	Liquid-Solid Adsorption Properties: Measurement of the Effective Surface Acidity of Solid Catalysts. Springer Series in Materials Science, 2013, , 543-551.	0.6	5
118	Chelation of copper(II) ions by doxorubicin and 4'-epidoxorubicin: an e.s.r. study. Anti-cancer Drug Design, 1985, 1, 53-7.	0.3	5
119	Half-coverage temperature at unit pressure as a characteristic parameter of chemisorption. Reaction Kinetics and Catalysis Letters, 1994, 52, 285-293.	0.6	4
120	Site energy distribution of copper catalytic surfaces from volumetric data collected at various temperatures. Thermochimica Acta, 2001, 379, 95-99.	2.7	4
121	Catalytic performances of CuGa and CuSn binary oxide catalysts towards N2O decomposition and reduction. Reaction Kinetics, Mechanisms and Catalysis, 2012, 105, 53-67.	1.7	4
122	Study of the Influence of the Nature of the Support on the Properties of Ferric Oxide in Relation to its Activity in the Decomposition of N ₂ O. Adsorption Science and Technology, 2011, 29, 365-379.	3.2	3
123	Initial activity of acidic, basic and amphoteric oxides in the reaction of CO2 with CS2 to form COS. Reaction Kinetics and Catalysis Letters, 1999, 68, 229-235.	0.6	2
124	Modulation of the acidity of niobic acid by ion-doping: Effects of nature and amount of the dopant ions. Thermochimica Acta, 2013, 567, 51-56.	2.7	2
125	Characterization of Acid–Base Sites in Oxides. Springer Series in Materials Science, 2013, , 319-352.	0.6	2
126	Hexagonal and cubic thermally stable mesoporous tin(IV) phosphates with acidic, basic and catalytic properties. Studies in Surface Science and Catalysis, 2002, 142, 1091-1099.	1.5	1

#	Article	IF	CITATIONS
127	Preparation and characterization of MoOx-SnO2 nano-sized materials for catalytic and gas sensing applications. Studies in Surface Science and Catalysis, 2005, , 291-309.	1.5	1
128	Tuning the Cu/SiO2 wettability features for bio-derived platform molecules valorization. Molecular Catalysis, 2022, 528, 112462.	2.0	1