Józef R Lewandowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/729933/publications.pdf

Version: 2024-02-01

55 3,287 31 55 papers citations h-index 59 59 3051

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Taming the dynamics in a pharmaceutical by cocrystallization: investigating the impact of the coformer by solid-state NMR. CrystEngComm, 2021, 23, 6859-6870.	2.6	7
2	Molecular basis for acyl carrier protein–ketoreductase interaction in <i>trans</i> -acyltransferase polyketide synthases. Chemical Science, 2021, 12, 13676-13685.	7.4	3
3	Docking domain-mediated subunit interactions in natural product megasynth(et)ases. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	17
4	Communication Breakdown: Dissecting the COM Interfaces between the Subunits of Nonribosomal Peptide Synthetases. ACS Catalysis, 2021, 11, 10802-10813.	11.2	14
5	Accelerating 15N and 13C R1 and R1ϕrelaxation measurements by multiple pathway solid-state NMR experiments. Journal of Magnetic Resonance, 2021, 331, 107049.	2.1	5
6	Dipolar Order Parameters in Large Systems With Fast Spinning. Frontiers in Molecular Biosciences, 2021, 8, 791026.	3.5	2
7	Revealing Intermolecular Hydrogen Bonding Structure and Dynamics in a Deep Eutectic Pharmaceutical by Magic-Angle Spinning NMR Spectroscopy. Molecular Pharmaceutics, 2020, 17, 622-631.	4.6	22
8	The SARS-COV-2 Spike Protein Binds Sialic Acids and Enables Rapid Detection in a Lateral Flow Point of Care Diagnostic Device. ACS Central Science, 2020, 6, 2046-2052.	11.3	222
9	Simultaneous MQMAS NMR Experiments for Two Half-Integer Quadrupolar Nuclei. Journal of Magnetic Resonance, 2020, 320, 106831.	2.1	2
10	Isolation and structural characterisation of rhodium(<scp>iii</scp>) η ² -fluoroarene complexes: experimental verification of predicted regioselectivity. Dalton Transactions, 2020, 49, 5791-5793.	3.3	7
11	MAS NMR Investigation of Molecular Order in an Ionic Liquid Crystal. Journal of Physical Chemistry B, 2020, 124, 4975-4988.	2.6	17
12	Quantifying Microsecond Exchange in Large Protein Complexes with Accelerated Relaxation Dispersion Experiments in the Solid State. Scientific Reports, 2019, 9, 11082.	3.3	23
13	A suite of solid-state NMR experiments to utilize orphaned magnetization for assignment of proteins using parallel high and low gamma detection. Journal of Magnetic Resonance, 2019, 305, 219-231.	2.1	18
14	Structural basis for chain release from the enacyloxin polyketide synthase. Nature Chemistry, 2019, 11, 913-923.	13.6	39
15	Modulation of Transmembrane Domain Interactions in Neu Receptor Tyrosine Kinase by Membrane Fluidity and Cholesterol. Journal of Membrane Biology, 2019, 252, 357-369.	2.1	10
16	Binding of Distinct Substrate Conformations Enables Hydroxylation of Remote Sites in Thaxtomin D by Cytochrome P450 TxtC. Journal of the American Chemical Society, 2019, 141, 216-222.	13.7	42
17	1H line width dependence on MAS speed in solid state NMR – Comparison of experiment and simulation. Journal of Magnetic Resonance, 2018, 291, 32-39.	2.1	80
18	Mechanism of intersubunit ketosynthase–dehydratase interaction in polyketide synthases. Nature Chemical Biology, 2018, 14, 270-275.	8.0	31

#	Article	IF	CITATIONS
19	Protein–protein interactions in <i>trans</i> AT polyketide synthases. Natural Product Reports, 2018, 35, 1097-1109.	10.3	29
20	Probing Protein Dynamics Using Multifield Variable Temperature NMR Relaxation and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2018, 122, 9697-9702.	2.6	15
21	Structural studies suggest aggregation as one of the modes of action for teixobactin. Chemical Science, 2018, 9, 8850-8859.	7.4	24
22	Solid-State NMR Provides Evidence for Small-Amplitude Slow Domain Motions in a Multispanning Transmembrane α-Helical Protein. Journal of the American Chemical Society, 2017, 139, 9246-9258.	13.7	27
23	Characterization of Protein–Protein Interfaces in Large Complexes by Solid-State NMR Solvent Paramagnetic Relaxation Enhancements. Journal of the American Chemical Society, 2017, 139, 12165-12174.	13.7	35
24	Huntingtin exon 1 fibrils feature an interdigitated β-hairpin–based polyglutamine core. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1546-1551.	7.1	143
25	Intermolecular Interactions and Protein Dynamics by Solidâ€State NMR Spectroscopy. Angewandte Chemie, 2015, 127, 15594-15598.	2.0	15
26	Intermolecular Interactions and Protein Dynamics by Solid-State NMR Spectroscopy. Angewandte Chemie - International Edition, 2015, 54, 15374-15378.	13.8	50
27	Unraveling the complexity of protein backbone dynamics with combined 13C and 15N solid-state NMR relaxation measurements. Physical Chemistry Chemical Physics, 2015, 17, 21997-22008.	2.8	37
28	Direct observation of hierarchical protein dynamics. Science, 2015, 348, 578-581.	12.6	222
29	Solid-State NMR of a Protein in a Precipitated Complex with a Full-Length Antibody. Journal of the American Chemical Society, 2014, 136, 16800-16806.	13.7	73
30	Conformational Dynamics of a Seven Transmembrane Helical Protein Anabaena Sensory Rhodopsin Probed by Solid-State NMR. Journal of the American Chemical Society, 2014, 136, 2833-2842.	13.7	78
31	Advances in Solid-State Relaxation Methodology for Probing Site-Specific Protein Dynamics. Accounts of Chemical Research, 2013, 46, 2018-2027.	15.6	88
32	Compensated second-order recoupling: application to third spin assisted recoupling. Physical Chemistry Chemical Physics, 2012, 14, 7246.	2.8	15
33	Atomic-Resolution Structural Dynamics in Crystalline Proteins from NMR and Molecular Simulation. Journal of Physical Chemistry Letters, 2012, 3, 3657-3662.	4.6	47
34	Simultaneous acquisition of homonuclear and heteronuclear long-distance contacts with time-shared third spin assisted recoupling. Journal of Magnetic Resonance, 2012, 218, 30-34.	2.1	16
35	High-resolution and sensitivity through-bond correlations in ultra-fast magic angle spinning (MAS) solid-state NMR. Chemical Science, 2011, 2, 345-348.	7.4	38
36	Enhanced Resolution and Coherence Lifetimes in the Solid-State NMR Spectroscopy of Perdeuterated Proteins under Ultrafast Magic-Angle Spinning. Journal of Physical Chemistry Letters, 2011, 2, 2205-2211.	4.6	123

#	Article	IF	Citations
37	Site-Specific Measurement of Slow Motions in Proteins. Journal of the American Chemical Society, 2011, 133, 16762-16765.	13.7	105
38	Structural Complexity of a Composite Amyloid Fibril. Journal of the American Chemical Society, 2011, 133, 14686-14698.	13.7	88
39	Heteronuclear proton assisted recoupling. Journal of Chemical Physics, 2011, 134, 095101.	3.0	48
40	Structural Characterization of GNNQQNY Amyloid Fibrils by Magic Angle Spinning NMR. Biochemistry, 2010, 49, 9457-9469.	2.5	66
41	High-Resolution Solid-State NMR Structure of a 17.6 kDa Protein. Journal of the American Chemical Society, 2010, 132, 1032-1040.	13.7	117
42	Fibrillar vs Crystalline Full-Length \hat{l}^2 -2-Microglobulin Studied by High-Resolution Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 5556-5557.	13.7	32
43	Anisotropic Collective Motion Contributes to Nuclear Spin Relaxation in Crystalline Proteins. Journal of the American Chemical Society, 2010, 132, 1246-1248.	13.7	43
44	Measurement of Site-Specific ¹³ C Spinâ^'Lattice Relaxation in a Crystalline Protein. Journal of the American Chemical Society, 2010, 132, 8252-8254.	13.7	80
45	¹⁵ Nâ^* ¹⁵ N Proton Assisted Recoupling in Magic Angle Spinning NMR. Journal of the American Chemical Society, 2009, 131, 5769-5776.	13.7	56
46	Proton Assisted Recoupling at High Spinning Frequencies. Journal of Physical Chemistry B, 2009, 113, 9062-9069.	2.6	63
47	Solid State NMR Studies Of Structural And Motional Complexity In Amyloid-Like Fibrils Of The Peptide GNNQQNY. Biophysical Journal, 2009, 96, 219a.	0.5	0
48	Proton assisted recoupling and protein structure determination. Journal of Chemical Physics, 2008, 129, 245101.	3.0	183
49	Spin dynamics in the modulation frame: Application to homonuclear recoupling in magic angle spinning solid-state NMR. Journal of Chemical Physics, 2008, 128, 124503.	3.0	50
50	Proton Assisted Insensitive Nuclei Cross Polarization. Journal of the American Chemical Society, 2007, 129, 728-729.	13.7	163
51	Solid-State NMR Study of Amyloid Nanocrystals and Fibrils Formed by the Peptide GNNQQNY from Yeast Prion Protein Sup35p. Journal of the American Chemical Society, 2007, 129, 5117-5130.	13.7	177
52	Dynamic Nuclear Polarization of Amyloidogenic Peptide Nanocrystals:Â GNNQQNY, a Core Segment of the Yeast Prion Protein Sup35p. Journal of the American Chemical Society, 2006, 128, 10840-10846.	13.7	255
53	Broadband Homonuclear Correlation Spectroscopy at High Magnetic Fields and MAS Frequencies. Journal of the American Chemical Society, 2006, 128, 1776-1777.	13.7	59
54	Multipole-multimode Floquet theory of rotational resonance width experiments: C13–C13 distance measurements in uniformly labeled solids. Journal of Chemical Physics, 2006, 124, 214107.	3.0	31

Józef R Lewandowski

#	Article	IF	CITATIONS
55	Benchmark calculations of the shielding constants in the water dimer. Chemical Physics Letters, 2001, 333, 139-145.	2.6	23