Polyanna da Conceição Bispo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7299251/publications.pdf Version: 2024-02-01

Polyanna da Conceição

#	Article	IF	CITATIONS
1	An estimate of the number of tropical tree species. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7472-7477.	7.1	335
2	Phylogenetic classification of the world's tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1837-1842.	7.1	144
3	The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth System Science Data, 2021, 13, 3927-3950.	9.9	123
4	Detection of oil pollution impacts on vegetation using multifrequency SAR, multispectral images with fuzzy forest and random forest methods. Environmental Pollution, 2020, 256, 113360.	7.5	50
5	A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sensing of Environment, 2022, 272, 112917.	11.0	48
6	Woody Aboveground Biomass Mapping of the Brazilian Savanna with a Multi-Sensor and Machine Learning Approach. Remote Sensing, 2020, 12, 2685.	4.0	32
7	Integration of Polarimetric PALSAR Attributes and Local Geomorphometric Variables Derived from SRTM for Forest Biomass Modeling in Central Amazonia. Canadian Journal of Remote Sensing, 2014, 40, 26-42.	2.4	28
8	Mapping forest successional stages in the Brazilian Amazon using forest heights derived from TanDEM-X SAR interferometry. Remote Sensing of Environment, 2019, 232, 111194.	11.0	22
9	Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. Forest Ecology and Management, 2021, 499, 119615.	3.2	20
10	VariÃįveis geomorfométricas locais e sua relação com a vegetação da região do interflúvio Madeira-Purus (AM-RO). Acta Amazonica, 2009, 39, 81-90.	0.7	17
11	Carbon Dynamics in a Human-Modified Tropical Forest: A Case Study Using Multi-Temporal LiDAR Data. Remote Sensing, 2020, 12, 430.	4.0	15
12	Predictive Models of Primary Tropical Forest Structure from Geomorphometric Variables Based on SRTM in the TapajÃ ³ s Region, Brazilian Amazon. PLoS ONE, 2016, 11, e0152009.	2.5	14
13	Near Real-Time Change Detection System Using Sentinel-2 and Machine Learning: A Test for Mexican and Colombian Forests. Remote Sensing, 2022, 14, 707.	4.0	14
14	Environmental vulnerability index: An evaluation of the water and the vegetation quality in a Brazilian Savanna and Seasonal Forest biome. Ecological Indicators, 2020, 112, 106163.	6.3	11
15	Drivers of metacommunity structure diverge for common and rare Amazonian tree species. PLoS ONE, 2017, 12, e0188300.	2.5	10
16	Benefits of Combining ALOS/PALSAR-2 and Sentinel-2A Data in the Classification of Land Cover Classes in the Santa Catarina Southern Plateau. Remote Sensing, 2021, 13, 229.	4.0	9
17	A Comparative Assessment of Machine-Learning Techniques for Forest Degradation Caused by Selective Logging in an Amazon Region Using Multitemporal X-Band SAR Images. Remote Sensing, 2021, 13, 3341.	4.0	9
18	Discriminating Forest Successional Stages, Forest Degradation, and Land Use in Central Amazon Using ALOS/PALSAR-2 Full-Polarimetric Data. Remote Sensing, 2020, 12, 3512.	4.0	8

#	Article	IF	CITATIONS
19	Effects of the geomorphometric characteristics of the local terrain on floristic composition in the central Brazilian Amazon. Austral Ecology, 2012, 37, 491-499.	1.5	6
20	Individual Tree Basal Area Increment Models for Brazilian Pine (Araucaria angustifolia) Using Artificial Neural Networks. Forests, 2022, 13, 1108.	2.1	6
21	ANALYSIS OF THE TARGET DECOMPOSITION TECHNIQUE ATTRIBUTES AND POLARIMETRIC RATIOS TO DISCRIMINATE LAND USE AND LAND COVER CLASSES OF THE TAPAJÃ"S REGION. Boletim De Ciencias Geodesicas, 2019, 25, .	0.3	5
22	Efeito da topografia na resposta polarimétrica de floresta tropical em imagens PALSAR/ALOS / Effect of topography on the polarimetric response of tropical forest in PALSAR/ALOS. Ambiência, 2012, 8, 501-510.	0.1	5
23	Relação entre as variáveis morfométricas extraÃdas de dados SRTM (Shuttle Radar Topography) Tj ETQq1 1	0,784314	4 rgBT /Overl
24	Evaluation of Environmental Naturalness: A Case Study in the Tietê-Jacaré Hydrographic Basin, São Paulo, Brazil. Sustainability, 2021, 13, 3021.	3.2	4
25	Análise de uso e cobertura da terra na região do tapajÃ3s, Amazônia central, a partir de dado polarimétrico PALSAR/ALOS-1 e coerência interferométrica TanDEM-X. Revista Brasileira De Geografia Fisica, 2018, 11, 2094-2108.	0.1	3
26	MAPPING THE SPATIAL DISTRIBUTION OF COLOMBIA'S FOREST ABOVEGROUND BIOMASS USING SAR AND OPTICAL DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3/W7, 57-60.	0.2	3
27	Removal of Ionospheric Effects from Sigma Naught Images of the ALOS/PALSAR-2 Satellite. Remote Sensing, 2022, 14, 962.	4.0	3
28	Change Detection of Selective Logging in the Brazilian Amazon Using X-Band SAR Data and Pre-Trained Convolutional Neural Networks. Remote Sensing, 2021, 13, 4944.	4.0	3
29	Analysis of a Landscape Intensely Modified by Agriculture in the Tietê–Jacaré Watershed, Brazil. Sustainability, 2021, 13, 9304.	3.2	2
30	Evaluation of land use effects on the natural landscapes of São Carlos - São Paulo, Brazil. Revista Brasileira De Geografia Fisica, 2018, 11, 1819-1831.	0.1	1
31	Different methodological approaches to natural vulnerability to erosion in southeastern Brazil. Brazilian Journal of Development, 2020, 6, 36755-36775.	0.1	1
32	Aboveground Woody Biomass Estimation of the Brazilian Cerrado Biome Using Data Integration. , 2021,		0
33	EVALUATION OF AREAS WITH ENVIRONMENTAL VULNERABILITY IN THE RIO CLARO HYDROGRAPHIC BASIN, SP – BRAZIL. Brazilian lournal of Development. 2020. 6. 53148-53164.	0.1	0