Jihyeon Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7299216/publications.pdf

Version: 2024-02-01

623734 501196 1,069 28 14 28 h-index citations g-index papers 31 31 31 1506 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cooperation and Functional Diversification of Two Closely Related Galactolipase Genes for AJasmonate Biosynthesis. Developmental Cell, 2008, 14, 183-192.	7. O	158
2	Direct observation of DNA target searching and cleavage by CRISPR-Cas12a. Nature Communications, 2018, 9, 2777.	12.8	148
3	Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics, 2018, 19, 542.	2.6	127
4	Photoautotrophic production of macular pigment in a <i>Chlamydomonas reinhardtii</i> strain generated by using DNAâ€free CRISPRâ€Cas9 RNPâ€mediated mutagenesis. Biotechnology and Bioengineering, 2018, 115, 719-728.	3.3	92
5	CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene, 2017, 36, 6823-6829.	5.9	84
6	Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Reports, 2021, 40, 1037-1045.	5.6	72
7	High-purity production and precise editing of DNA base editing ribonucleoproteins. Science Advances, 2021, 7, .	10.3	43
8	Deletion of the chloroplast LTD protein impedes LHCI import and PSI–LHCI assembly in Chlamydomonas reinhardtii. Journal of Experimental Botany, 2018, 69, 1147-1158.	4.8	37
9	<i>WEREWOLF</i> , a Regulator of Root Hair Pattern Formation, Controls Flowering Time through the Regulation of <i>FT</i> mRNA Stability Â. Plant Physiology, 2011, 156, 1867-1877.	4.8	35
10	Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease. Cell Stem Cell, 2021, 28, 1614-1624.e5.	11.1	35
11	CRISPR-Pass: Gene Rescue of Nonsense Mutations Using Adenine Base Editors. Molecular Therapy, 2019, 27, 1364-1371.	8.2	34
12	Construction of non-canonical PAM-targeting adenosine base editors by restriction enzyme-free DNA cloning using CRISPR-Cas9. Scientific Reports, 2019, 9, 4939.	3.3	29
13	Analysis of NHEJ-Based DNA Repair after CRISPR-Mediated DNA Cleavage. International Journal of Molecular Sciences, 2021, 22, 6397.	4.1	26
14	The two clock proteins CCA1 and LHY activate <i>VIN3</i> transcription during vernalization through the vernalization-responsive cis-element. Plant Cell, 2022, 34, 1020-1037.	6.6	24
15	ID3 regulates the MDC1-mediated DNA damage response in order to maintain genome stability. Nature Communications, 2017, 8, 903.	12.8	20
16	CRISPR-sub: Analysis of DNA substitution mutations caused by CRISPR-Cas9 in human cells. Computational and Structural Biotechnology Journal, 2020, 18, 1686-1694.	4.1	17
17	Arabidopsis ATXR2 represses de novo shoot organogenesis in the transition from callus to shoot formation. Cell Reports, 2021, 37, 109980.	6.4	16
18	Generation and Transcriptome Profiling of Slr1-d7 and Slr1-d8 Mutant Lines with a New Semi-Dominant Dwarf Allele of SLR1 Using the CRISPR/Cas9 System in Rice. International Journal of Molecular Sciences, 2020, 21, 5492.	4.1	14

#	Article	IF	CITATIONS
19	AC-motif: a DNA motif containing adenine and cytosine repeat plays a role in gene regulation. Nucleic Acids Research, 2021, 49, 10150-10165.	14.5	14
20	Transcriptomic and physiological analysis of OsCAO1 knockout lines using the CRISPR/Cas9 system in rice. Plant Cell Reports, 2021, 40, 1013-1024.	5.6	12
21	InÂvivo gene editing via homology-independent targeted integration for adrenoleukodystrophy treatment. Molecular Therapy, 2022, 30, 119-129.	8.2	9
22	Targeted cytochrome P450 3045C1 (CYP3045C1) gene mutation via CRISPR-Cas9 ribonucleoproteins in the marine rotifer Brachionus koreanus. Hydrobiologia, 2019, 844, 117-128.	2.0	6
23	CRISPR-mediated gene correction links the ATP7A M1311V mutations with amyotrophic lateral sclerosis pathogenesis in one individual. Communications Biology, 2020, 3, 33.	4.4	6
24	DNA-free Genome Editing of Chlamydomonas reinhardtii Using CRISPR and Subsequent Mutant Analysis. Bio-protocol, 2017, 7, e2352.	0.4	5
25	Enhancing plant immunity by expression of pathogen-targeted CRISPR-Cas9 in plants. Gene and Genome Editing, 2021, 1, 100001.	2.6	2
26	Purification of an Intact Human Protein Overexpressed from Its Endogenous Locus via Direct Genome Engineering. ACS Synthetic Biology, 2020, 9, 1591-1598.	3.8	1
27	Efficient Human Cell Coexpression System and Its Application to the Production of Multiple Coronavirus Antigens. Advanced Biology, 2021, 5, 2000154.	2.5	1
28	Mitochondrial genome of the Antarctic microalga <i>Micractinium simplicissimum</i> KSF0127 (Chlorellaceae, Trebouxiophyceae). Mitochondrial DNA Part B: Resources, 2021, 6, 878-879.	0.4	1