Heidrun Ellinger-Ziegelbauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7299032/publications.pdf

Version: 2024-02-01

201674 197818 2,667 49 27 49 citations h-index g-index papers 51 51 51 3035 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	Prediction of a carcinogenic potential of rat hepatocarcinogens using toxicogenomics analysis of short-term in vivo studies. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2008, 637, 23-39.	1.0	214
2	Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 575, 61-84.	1.0	197
3	Mechanistic Investigations of the Mitochondrial Complex I Inhibitor Rotenone in the Context of Pharmacological and Safety Evaluation. Scientific Reports, 2017, 7, 45465.	3.3	196
4	Characteristic Expression Profiles Induced by Genotoxic Carcinogens in Rat Liver. Toxicological Sciences, 2004, 77, 19-34.	3.1	155
5	Application of toxicogenomics to study mechanisms of genotoxicity and carcinogenicity. Toxicology Letters, 2009, 186, 36-44.	0.8	126
6	Physical and Functional Interaction of Filamin (Actin-binding Protein-280) and Tumor Necrosis Factor Receptor-associated Factor 2. Journal of Biological Chemistry, 2000, 275, 271-278.	3.4	112
7	Performance of Novel Kidney Biomarkers in Preclinical Toxicity Studies. Toxicological Sciences, 2010, 116, 8-22.	3.1	101
8	Direct Activation of the Stress-activated Protein Kinase (SAPK) and Extracellular Signal-regulated Protein Kinase (ERK) Pathways by an Inducible Mitogen-activated Protein Kinase/ERK Kinase Kinase 3 (MEKK) Derivative. Journal of Biological Chemistry, 1997, 272, 2668-2674.	3.4	91
9	Prediction of human drug-induced liver injury (DILI) in relation to oral doses and blood concentrations. Archives of Toxicology, 2019, 93, 1609-1637.	4.2	86
10	Cell Cycle Arrest and Reversion of Ras-Induced Transformation by a Conditionally Activated Form of Mitogen-Activated Protein Kinase Kinase Kinase 3. Molecular and Cellular Biology, 1999, 19, 3857-3868.	2.3	84
11	EU Framework 6 Project: Predictive Toxicology (PredTox)â€"overview and outcome. Toxicology and Applied Pharmacology, 2011, 252, 73-84.	2.8	84
12	Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes \hat{A}^{\otimes}) relative to \hat{I} ±-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period. Toxicology, 2009, 266, 16-29.	4.2	81
13	Ste20-like kinase (SLK), a regulatory kinase for polo-like kinase (Plk) during the G2/M transition in somatic cells. Genes To Cells, 2000, 5, 491-498.	1.2	76
14	Characterization and Interlaboratory Comparison of a Gene Expression Signature for Differentiating Genotoxic Mechanisms. Toxicological Sciences, 2009, 110, 341-352.	3.1	72
15	Development and validation of a high-throughput transcriptomic biomarker to address 21st century genetic toxicology needs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10881-E10889.	7.1	70
16	Urinary microRNA profiling for identification of biomarkers after cisplatin-induced kidney injury. Toxicology, 2014, 324, 147-157.	4.2	66
17	The carcinoGENOMICS project: Critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays. Mutation Research - Reviews in Mutation Research, 2008, 659, 202-210.	5. 5	60
18	Phenobarbital Induces Cell Cycle Transcriptional Responses in Mouse LiverÂHumanized for ConstitutiveÂAndrostane and Pregnane X Receptors. Toxicological Sciences, 2014, 139, 501-511.	3.1	60

#	Article	IF	Citations
19	The enhanced value of combining conventional and "omics―analyses in early assessment of drug-induced hepatobiliary injury. Toxicology and Applied Pharmacology, 2011, 252, 97-111.	2.8	58
20	Carcinogen-Specific Gene Expression Profiles in Short-term Treated Eker and Wild-type Rats Indicative of Pathways Involved in Renal Tumorigenesis. Cancer Research, 2007, 67, 4052-4068.	0.9	56
21	Pharmacokinetics explain in vivo/in vitro discrepancies of carcinogen-induced gene expression alterations in rat liver and cultivated hepatocytes. Archives of Toxicology, 2013, 87, 337-345.	4.2	49
22	Toxicogenomics directory of rat hepatotoxicants in vivo and in cultivated hepatocytes. Archives of Toxicology, 2018, 92, 3517-3533.	4.2	46
23	Cross-Platform Toxicogenomics for the Prediction of Non-Genotoxic Hepatocarcinogenesis in Rat. PLoS ONE, 2014, 9, e97640.	2.5	44
24	Transcriptomic alterations induced by Ochratoxin A in rat and human renal proximal tubular in vitro models and comparison to a rat in vivo model. Archives of Toxicology, 2012, 86, 571-589.	4.2	42
25	The Role of Residual Gadolinium in the Induction of Nephrogenic Systemic Fibrosis-Like Skin Lesions in Rats. Investigative Radiology, 2011, 46, 48-56.	6.2	39
26	Inter-laboratory comparison of human renal proximal tubule (HK-2) transcriptome alterations due to Cyclosporine A exposure and medium exhaustion. Toxicology in Vitro, 2009, 23, 486-499.	2.4	36
27	Beyond miR-122: Identification of MicroRNA Alterations in Blood During a Time Course of Hepatobiliary Injury and Biliary Hyperplasia in Rats. Toxicological Sciences, 2016, 150, 3-14.	3.1	33
28	Non-Lethal Endotoxin Injection: A Rat Model of Hypercoagulability. PLoS ONE, 2017, 12, e0169976.	2.5	28
29	Comparison of hepatocarcinogen-induced gene expression profiles in conventional primary rat hepatocytes with in vivo rat liver. Archives of Toxicology, 2012, 86, 1399-1411.	4.2	23
30	Comparison of the Mesoscale Discovery and Luminex multiplex platforms for measurement of urinary biomarkers in a cisplatin rat kidney injury model. Journal of Pharmacological and Toxicological Methods, 2014, 69, 196-204.	0.7	23
31	Quantitative targeted bile acid profiling as new markers for DILI in a model of methapyrilene-induced liver injury in rats. Toxicology, 2017, 386, 1-10.	4.2	22
32	A cross-sector call to improve carcinogenicity risk assessment through use of genomic methodologies. Regulatory Toxicology and Pharmacology, 2020, 110, 104526.	2.7	21
33	Molecular Characterization of Preneoplastic Lesions Provides Insight on the Development of Renal Tumors. American Journal of Pathology, 2009, 175, 1686-1698.	3.8	19
34	Urinary miRNA Biomarkers of Drug-Induced Kidney Injury and Their Site Specificity Within the Nephron. Toxicological Sciences, 2021, 180, 1-16.	3.1	19
35	Glomerulonephritis-Induced Changes in Urinary and Kidney MicroRNA Profiles in Rats. Toxicological Sciences, 2015, 145, 348-359.	3.1	18
36	Establishment of a protocol for the gene expression analysis of laser microdissected rat kidney samples with affymetrix genechips. Toxicology and Applied Pharmacology, 2006, 217, 134-142.	2.8	17

#	Article	IF	CITATIONS
37	Evaluation of Toxicogenomics Approaches for Assessing the Risk of Nongenotoxic Carcinogenicity in Rat Liver. PLoS ONE, 2014, 9, e97678.	2.5	17
38	Testosterone response of hepatic gene expression in female mice having acquired testosterone-unresponsive immunity to Plasmodium chabaudi malaria. Steroids, 2011, 76, 1204-1212.	1.8	15
39	Comparison of genotoxicant-modified transcriptomic responses in conventional and epigenetically stabilized primary rat hepatocytes with in vivo rat liver data. Archives of Toxicology, 2012, 86, 1703-1715.	4.2	15
40	TGx-DDI, a Transcriptomic Biomarker for Genotoxicity Hazard Assessment of Pharmaceuticals and Environmental Chemicals. Frontiers in Big Data, 2019, 2, 36.	2.9	15
41	Methodological considerations for measuring biofluid-based microRNA biomarkers. Critical Reviews in Toxicology, 2021, 51, 264-282.	3.9	13
42	Absolute Measurement of Cardiac Injury-Induced microRNAs in Biofluids across Multiple Test Sites. Toxicological Sciences, 2016, 154, 115-125.	3.1	9
43	Time-matched analysis of DNA adduct formation and early gene expression as predictive tool for renal carcinogenesis in methylazoxymethanol acetate treated Eker rats. Archives of Toxicology, 2017, 91, 3427-3438.	4.2	8
44	Xenobiotic CAR Activators Induce Dlk1-Dio3 Locus Noncoding RNA Expression in Mouse Liver. Toxicological Sciences, 2017, 158, 367-378.	3.1	7
45	A Collaborative Initiative to Establish Genomic Biomarkers for Assessing Tumorigenic Potential to Reduce Reliance on Conventional Rodent Carcinogenicity Studies. Toxicological Sciences, 2022, 188, 4-16.	3.1	7
46	Energy metabolism modulation byÂbiguanides in comparison with rotenone in rat liver and heart. Archives of Toxicology, 2019, 93, 2603-2615.	4.2	6
47	Urinary miRNA Profiles in Chronic Kidney Injury—Benefits of Extracellular Vesicle Enrichment and miRNAs as Potential Biomarkers for Renal Fibrosis, Glomerular Injury, and Endothelial Dysfunction. Toxicological Sciences, 2022, , .	3.1	2
48	An elastic network model to identify characteristic stress response genes. Computational Biology and Chemistry, 2010, 34, 193-202.	2.3	1
49	Glomerulonephritis-induced changes in kidney gene expression in rats. Genomics Data, 2015, 6, 81-82.	1.3	O