Hisashi Sugime

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7298985/hisashi-sugime-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

65
papers
1,295
citations
h-index

69
ext. papers

1,511
ext. papers

20
h-index
g-index

6.9
avg, IF
L-index

#	Paper	IF	Citations
65	Systematic investigation of anode catalysts for liquid ammonia electrolysis. <i>Journal of Catalysis</i> , 2022 , 406, 222-230	7.3	Ο
64	Fast and stable hydrogen storage in the porous composite of MgH2 with Nb2O5 catalyst and carbon nanotube. <i>Journal of Alloys and Compounds</i> , 2022 , 893, 162206	5.7	5
63	Why Shouldn Double-Layer Capacitance (Cdl) Be Always Trusted to Justify Faradaic Electrocatalytic Activity Differences?. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 115842	4.1	8
62	Switching of Electron Transport Direction from the Long Axis to Short Axis in a Radial SnO(Head)-Rutile TiO Nanorod(Tail) Heteromesocrystal Photocatalyst. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 11717-11722	6.4	О
61	High-performance solution-based silicon heterojunction solar cells using carbon nanotube with polymeric acid doping. <i>Carbon</i> , 2021 , 175, 519-524	10.4	1
60	Surface amorphized nickel hydroxy sulphide for efficient hydrogen evolution reaction in alkaline medium. <i>Chemical Engineering Journal</i> , 2021 , 408, 127275	14.7	20
59	Performance enhancement of carbon nanotube/silicon solar cell by solution processable MoOx. <i>Applied Surface Science</i> , 2021 , 542, 148682	6.7	5
58	Ultra-long carbon nanotube forest via in situ supplements of iron and aluminum vapor sources. <i>Carbon</i> , 2021 , 172, 772-780	10.4	15
57	Pushing the Limits of Rapid Anodic Growth of CuO/Cu(OH)2 Nanoneedles on Cu for the Methanol Oxidation Reaction: Anodization pH Is the Game Changer. <i>ACS Applied Energy Materials</i> , 2021 , 4, 899-91	26.1	10
56	Fluidized-bed production of 0.3 mm-long single-wall carbon nanotubes at 28% carbon yield with 0.1 mass% catalyst impurities using ethylene and carbon dioxide. <i>Carbon</i> , 2021 , 182, 23-31	10.4	2
55	Numerical simulation of heat supply and hydrogen desorption by hydrogen flow to porous MgH2 sheet. <i>Chemical Engineering Journal</i> , 2021 , 421, 129648	14.7	2
54	Carbon nanotube/silicon heterojunction solar cell with an active area of 4½m2 realized using a multifunctional molybdenum oxide layer. <i>Carbon</i> , 2021 , 185, 215-223	10.4	1
53	Enhanced CO2-assisted growth of single-wall carbon nanotube arrays using Fe/AlO catalyst annealed without CO2. <i>Carbon</i> , 2021 , 185, 264-271	10.4	1
52	Chemical Leaching of Inactive Cr and Subsequent Electrochemical Resurfacing of Catalytically Active Sites in Stainless Steel for High-Rate Alkaline Hydrogen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2020 , 3, 12596-12606	6.1	10
51	Ultrafast Growth of a Cu(OH)-CuO Nanoneedle Array on Cu Foil for Methanol Oxidation Electrocatalysis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 27327-27338	9.5	49
50	Facile catalyst deposition using mists for fluidized-bed production of sub-millimeter-long carbon nanotubes. <i>Carbon</i> , 2020 , 167, 256-263	10.4	7
49	Electrolysis of ammonia in aqueous solution by platinum nanoparticles supported on carbon nanotube film electrode. <i>Electrochimica Acta</i> , 2020 , 341, 136027	6.7	13

(2016-2020)

48	Dispersing and doping carbon nanotubes by poly(p-styrene-sulfonic acid) for high-performance and stable transparent conductive films. <i>Carbon</i> , 2020 , 164, 150-156	10.4	10
47	Achieving Increased Electrochemical Accessibility and Lowered Oxygen Evolution Reaction Activation Energy for Co2+ Sites with a Simple Anion Preoxidation. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 9673-9684	3.8	21
46	Boosting the oxygen evolution activity of copper foam containing trace Ni by intentionally supplementing Fe and forming nanowires in anodization. <i>Electrochimica Acta</i> , 2020 , 364, 137170	6.7	9
45	1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. <i>Chemical Engineering Science</i> , 2019 , 201, 319-324	4.4	7
44	Enhancing the photovoltaic performance of hybrid heterojunction solar cells by passivation of silicon surface via a simple 1-min annealing process. <i>Scientific Reports</i> , 2019 , 9, 12051	4.9	11
43	Gd-Enhanced Growth of Multi-Millimeter-Tall Forests of Single-Wall Carbon Nanotubes. <i>ACS Nano</i> , 2019 , 13, 13208-13216	16.7	7
42	Direct formation of continuous multilayer graphene films with controllable thickness on dielectric substrates. <i>Thin Solid Films</i> , 2019 , 675, 136-142	2.2	1
41	Millimeter-tall carbon nanotube arrays grown on aluminum substrates. <i>Carbon</i> , 2018 , 130, 834-842	10.4	22
40	Carbon nanotube isolation layer enhancing in-liquid quality-factors of thin film bulk acoustic wave resonators for gravimetric sensing. <i>Sensors and Actuators B: Chemical</i> , 2018 , 261, 398-407	8.5	10
39	Flame-assisted chemical vapor deposition for continuous gas-phase synthesis of 1-nm-diameter single-wall carbon nanotubes. <i>Carbon</i> , 2018 , 138, 1-7	10.4	19
38	An interdigitated electrode with dense carbon nanotube forests on conductive supports for electrochemical biosensors. <i>Analyst, The</i> , 2018 , 143, 3635-3642	5	8
37	CO2-assisted growth of millimeter-tall single-wall carbon nanotube arrays and its advantage against H2O for large-scale and uniform synthesis. <i>Carbon</i> , 2018 , 136, 143-149	10.4	22
36	Catalyst nucleation and carbon nanotube growth from flame-synthesized Co-Al-O nanopowders at ten-second time scale. <i>Carbon</i> , 2017 , 114, 31-38	10.4	7
35	Low temperature growth of fully covered single-layer graphene using a CoCu catalyst. <i>Nanoscale</i> , 2017 , 9, 14467-14475	7.7	11
34	From Growth Surface to Device Interface: Preserving Metallic Fe under Monolayer Hexagonal Boron Nitride. <i>ACS Applied Materials & Acs Applied & Acs Applie</i>	9.5	13
33	Ten-Second Epitaxy of Cu on Repeatedly Used Sapphire for Practical Production of High-Quality Graphene. <i>ACS Omega</i> , 2017 , 2, 3354-3362	3.9	2
32	Stable, efficient p-type doping of graphene by nitric acid. RSC Advances, 2016, 6, 113185-113192	3.7	49
31	Growth of Continuous Monolayer Graphene with Millimeter-sized Domains Using Industrially Safe Conditions. <i>Scientific Reports</i> , 2016 , 6, 21152	4.9	40

30	Growth of high quality, high density single-walled carbon nanotube forests on copper foils. <i>Carbon</i> , 2016 , 98, 624-632	10.4	25
29	Low-Temperature Growth of Carbon Nanotube Forests Consisting of Tubes with Narrow Inner Spacing Using Co/Al/Mo Catalyst on Conductive Supports. <i>ACS Applied Materials & Description</i> (2015, 7, 16819-27)	9.5	23
28	Efficient Transfer Doping of Carbon Nanotube Forests by MoO3. ACS Nano, 2015, 9, 10422-30	16.7	33
27	Carbon nanotube forests as top electrode in electroacoustic resonators. <i>Applied Physics Letters</i> , 2015 , 107, 133106	3.4	6
26	Spatial variability in large area single and few-layer CVD graphene 2015,		1
25	Growth of high-density carbon nanotube forests on conductive TiSiN supports. <i>Applied Physics Letters</i> , 2015 , 106, 083108	3.4	25
24	Carbon nanotube growth on conductors: Influence of the support structure and catalyst thickness. <i>Carbon</i> , 2014 , 73, 13-24	10.4	13
23	Effect of Oxygen Plasma Alumina Treatment on Growth of Carbon Nanotube Forests. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 18683-18692	3.8	8
22	Growth kinetics and growth mechanism of ultrahigh mass density carbon nanotube forests on conductive Ti/Cu supports. <i>ACS Applied Materials & District Materials & Conductive Ti/Cu supports and District Materials & Distr</i>	9.5	19
21	Co-catalytic absorption layers for controlled laser-induced chemical vapor deposition of carbon nanotubes. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 4025-32	9.5	12
20	Hybrids of carbon nanotube forests and gold nanoparticles for improved surface plasmon manipulation. <i>ACS Applied Materials & </i>	9.5	9
19	Comparison of carbon nanotube forest growth using AlSi, TiSiN, and TiN as conductive catalyst supports. <i>Physica Status Solidi (B): Basic Research</i> , 2014 , 251, 2389-2393	1.3	6
18	Low temperature growth of ultra-high mass density carbon nanotube forests on conductive supports. <i>Applied Physics Letters</i> , 2013 , 103, 073116	3.4	44
17	Evaluation of bimetallic catalysts for the growth of carbon nanotube forests. <i>Physica Status Solidi</i> (B): Basic Research, 2013 , 250, 2605-2610	1.3	5
16	Fluidized-bed synthesis of sub-millimeter-long single walled carbon nanotube arrays. <i>Carbon</i> , 2012 , 50, 1538-1545	10.4	32
15	Cold-gas chemical vapor deposition to identify the key precursor for rapidly growing vertically-aligned single-wall and few-wall carbon nanotubes from pyrolyzed ethanol. <i>Carbon</i> , 2012 , 50, 2953-2960	10.4	30
14	Sub-millimeter-long carbon nanotubes repeatedly grown on and separated from ceramic beads in a single fluidized bed reactor. <i>Carbon</i> , 2011 , 49, 1972-1979	10.4	57
13	Tailoring the Morphology of Carbon Nanotube Assemblies Using Microgradients in the Catalyst Thickness. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 095101	1.4	

LIST OF PUBLICATIONS

12	Tailoring the Morphology of Carbon Nanotube Assemblies Using Microgradients in the Catalyst Thickness. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 095101	1.4	
11	A Simple Combinatorial Method Aiding Research on Single-Walled Carbon Nanotube Growth on Substrates. <i>Japanese Journal of Applied Physics</i> , 2010 , 49, 02BA02	1.4	19
10	Millimeter-tall single-walled carbon nanotube forests grown from ethanol. <i>Carbon</i> , 2010 , 48, 2203-2211	10.4	51
9	Efficient field emission from triode-type 1D arrays of carbon nanotubes. <i>Nanotechnology</i> , 2009 , 20, 475	79.7	7
8	Multiple BptimumLonditions for CoMo catalyzed growth of vertically aligned single-walled carbon nanotube forests. <i>Carbon</i> , 2009 , 47, 234-241	10.4	88
7	Combinatorial Surface-Enhanced Raman Spectroscopy and Spectroscopic Ellipsometry of Silver Island Films. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 4820-4828	3.8	37
6	12.3: 1-Second Implementation of CNT-Emitter Arrays on Glasses for BLUs. <i>Digest of Technical Papers SID International Symposium</i> , 2009 , 40, 139	0.5	1
5	Combinatorial Evaluation for Field Emission Properties of Carbon Nanotubes. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17974-17982	3.8	9
4	Field Emission Properties of Single-Walled Carbon Nanotubes with a Variety of Emitter Morphologies. <i>Japanese Journal of Applied Physics</i> , 2008 , 47, 4780-4787	1.4	17
3	Growth window and possible mechanism of millimeter-thick single-walled carbon nanotube forests. Journal of Nanoscience and Nanotechnology, 2008 , 8, 6123-8	1.3	37
2	Millimeter-Thick Single-Walled Carbon Nanotube Forests: Hidden Role of Catalyst Support. Japanese Journal of Applied Physics, 2007 , 46, L399-L401	1.4	180
1	A simple combinatorial method to discover CoMo binary catalysts that grow vertically aligned single-walled carbon nanotubes. <i>Carbon</i> , 2006 , 44, 1414-1419	10.4	81