Brigitte Bressac-de Paillerets

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7298249/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa. Nature, 1991, 350, 429-431.	13.7	1,356
2	p53 functions as a cell cycle control protein in osteosarcomas Molecular and Cellular Biology, 1990, 10, 5772-5781.	1.1	779
3	Genetic Testing in Pheochromocytoma or Functional Paraganglioma. Journal of Clinical Oncology, 2005, 23, 8812-8818.	0.8	612
4	Revisiting Li-Fraumeni Syndrome From <i>TP53</i> Mutation Carriers. Journal of Clinical Oncology, 2015, 33, 2345-2352.	0.8	525
5	Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nature Genetics, 2013, 45, 371-384.	9.4	493
6	A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature, 2011, 480, 94-98.	13.7	466
7	Geographical Variation in the Penetrance of CDKN2A Mutations for Melanoma. Journal of the National Cancer Institute, 2002, 94, 894-903.	3.0	435
8	Genome-wide association study identifies three loci associated with melanoma risk. Nature Genetics, 2009, 41, 920-925.	9.4	422
9	Abnormal structure and expression of p53 gene in human hepatocellular carcinoma Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 1973-1977.	3.3	386
10	High-risk Melanoma Susceptibility Genes and Pancreatic Cancer, Neural System Tumors, and Uveal Melanoma across GenoMEL. Cancer Research, 2006, 66, 9818-9828.	0.4	373
11	Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group [published erratum appears in Hum Mol Genet 1998 May;7(5):941]. Human Molecular Genetics, 1998, 7, 209-216.	1.4	345
12	2009 Version of the Chompret Criteria for Li Fraumeni Syndrome. Journal of Clinical Oncology, 2009, 27, e108-e109.	0.8	291
13	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	9.4	289
14	Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nature Genetics, 2014, 46, 482-486.	9.4	283
15	Common Breast Cancer-Predisposition Alleles Are Associated with Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. American Journal of Human Genetics, 2008, 82, 937-948.	2.6	257
16	Germline BAP1 Mutations Predispose to Renal Cell Carcinomas. American Journal of Human Genetics, 2013, 92, 974-980.	2.6	239
17	Genome-wide association study identifies three new melanoma susceptibility loci. Nature Genetics, 2011, 43, 1108-1113.	9.4	230
18	Senescent cells develop a PARP-1 and nuclear factor-κB-associated secretome (PNAS). Genes and Development, 2011, 25, 1245-1261.	2.7	223

#	Article	IF	CITATIONS
19	PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology, 2004, 126, 318-321.	0.6	220
20	Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants. Human Mutation, 2012, 33, 1228-1238.	1.1	210
21	Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. Journal of Medical Genetics, 2008, 45, 535-538.	1.5	181
22	Comprehensive Study of the Clinical Phenotype of Germline <i>BAP1</i> Variant-Carrying Families Worldwide. Journal of the National Cancer Institute, 2018, 110, 1328-1341.	3.0	164
23	Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nature Genetics, 2012, 44, 323-327.	9.4	160
24	Selection criteria for genetic assessment of patients with familial melanoma. Journal of the American Academy of Dermatology, 2009, 61, 677.e1-677.e14.	0.6	154
25	Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nature Genetics, 2011, 43, 1114-1118.	9.4	140
26	Cancer risk in heterozygotes for ataxia-telangiectasia. International Journal of Cancer, 2001, 93, 288-293.	2.3	124
27	Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt's lymphoma cells. Oncogene, 1998, 16, 1603-1610.	2.6	123
28	Clinical impact of the NKp30/B7-H6 axis in high-risk neuroblastoma patients. Science Translational Medicine, 2015, 7, 283ra55.	5.8	120
29	The Founder Mutation MSH2*1906G→C Is an Important Cause of Hereditary Nonpolyposis Colorectal Cancer in the Ashkenazi Jewish Population. American Journal of Human Genetics, 2002, 71, 1395-1412.	2.6	118
30	Novel FH mutations in families with hereditary leiomyomatosis and renal cell cancer (HLRCC) and patients with isolated type 2 papillary renal cell carcinoma. Journal of Medical Genetics, 2011, 48, 226-234.	1.5	116
31	Localization of a Novel Melanoma Susceptibility Locus to 1p22. American Journal of Human Genetics, 2003, 73, 301-313.	2.6	113
32	Melanoma prone families with <i>CDK4</i> germline mutation: phenotypic profile and associations with <i>MC1R</i> variants. Journal of Medical Genetics, 2013, 50, 264-270.	1.5	112
33	Association of MC1R Variants and Host Phenotypes With Melanoma Risk in CDKN2A Mutation Carriers: A GenoMEL Study. Journal of the National Cancer Institute, 2010, 102, 1568-1583.	3.0	108
34	Genetic testing for melanoma. Lancet Oncology, The, 2002, 3, 653-654.	5.1	106
35	High Frequency of Germline <i>SUFU</i> Mutations in Children With Desmoplastic/Nodular Medulloblastoma Younger Than 3 Years of Age. Journal of Clinical Oncology, 2012, 30, 2087-2093.	0.8	106
36	Reassessing the clinical spectrum associated with hereditary leiomyomatosis and renal cell carcinoma syndrome in French <i><scp>FH</scp></i> mutation carriers. Clinical Genetics, 2017, 92, 606-615.	1.0	103

#	Article	IF	CITATIONS
37	Breast cancer risk in ataxia telangiectasia (AT) heterozygotes: haplotype study in French AT families. British Journal of Cancer, 1999, 80, 1042-1045.	2.9	102
38	The Exon 13 Duplication in the BRCA1 Gene Is a Founder Mutation Present in Geographically Diverse Populations. American Journal of Human Genetics, 2000, 67, 207-212.	2.6	100
39	Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Human Molecular Genetics, 2009, 18, 4442-4456.	1.4	99
40	Accumulation of multiple mutations in tumour suppressor genes during colorectal tumorigenesis in HNPCC patients. Human Molecular Genetics, 1994, 3, 2257-2260.	1.4	98
41	Influence of Genes, Nevi, and Sun Sensitivity on Melanoma Risk in a Family Sample Unselected by Family History and in Melanoma-Prone Families. Journal of the National Cancer Institute, 2004, 96, 785-795.	3.0	97
42	Therapeutic activity of CPT-11, a DNA-topoisomerase I inhibitor, against peripheral primitive neuroectodermal tumour and neuroblastoma xenografts. British Journal of Cancer, 1996, 74, 537-545.	2.9	95
43	Significant Contribution of Germline BRCA2 Rearrangements in Male Breast Cancer Families. Cancer Research, 2004, 64, 8143-8147.	0.4	94
44	Primary proliferative T cell response to wild-type p53 protein in patients with breast cancer. European Journal of Immunology, 1995, 25, 1765-1769.	1.6	90
45	Germline <i><scp>BAP1</scp></i> mutations predispose also to multiple basal cell carcinomas. Clinical Genetics, 2015, 88, 273-277.	1.0	85
46	A Single Genetic Origin for the G101W CDKN2A Mutation in 20 Melanoma-Prone Families. American Journal of Human Genetics, 2000, 67, 311-319.	2.6	80
47	Prevalence of the <scp>E</scp> 318 <scp>K MITF</scp> germline mutation in Italian melanoma patients: associations with histological subtypes and family cancer history. Pigment Cell and Melanoma Research, 2013, 26, 259-262.	1.5	80
48	Resistance of MCF7 human breast carcinoma cells to TNF-induced cell death is associated with loss of p53 function. Oncogene, 1997, 15, 2817-2826.	2.6	78
49	Common variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 are associated with breast cancer risk for BRCA1 and/or BRCA2mutation carriers. Breast Cancer Research, 2012, 14, R33.	2.2	78
50	Contribution of de novo and mosaic <i>TP53</i> mutations to Li-Fraumeni syndrome. Journal of Medical Genetics, 2018, 55, 173-180.	1.5	78
51	Extensive molecular screening for hereditary non-polyposis colorectal cancer. British Journal of Cancer, 2000, 82, 871-880.	2.9	73
52	Screening for TP53 rearrangements in families with the Li–Fraumeni syndrome reveals a complete deletion of the TP53 gene. Oncogene, 2003, 22, 840-846.	2.6	72
53	Novel diagnostic tool for prediction of variant spliceogenicity derived from a set of 395 combined in silico/in vitro studies: an international collaborative effort. Nucleic Acids Research, 2018, 46, 7913-7923.	6.5	71
54	ldentification of a new VHL exon and complex splicing alterations in familial erythrocytosis or von Hippel-Lindau disease. Blood, 2018, 132, 469-483.	0.6	70

#	Article	IF	CITATIONS
55	Mutations in BHD and TP53 genes, but not in HNF1β gene, in a large series of sporadic chromophobe renal cell carcinoma. British Journal of Cancer, 2007, 96, 336-340.	2.9	65
56	Pattern multiplicity and fumarate hydratase (FH)/S-(2-succino)-cysteine (2SC) staining but not eosinophilic nucleoli with perinucleolar halos differentiate hereditary leiomyomatosis and renal cell carcinoma-associated renal cell carcinomas from kidney tumors without FH gene alteration. Modern Pathology, 2018, 31, 974-983.	2.9	65
57	Melanocortin-1 Receptor (MC1R) Gene Variants and Dysplastic Nevi Modify Penetrance of CDKN2A Mutations in French Melanoma-Prone Pedigrees. Cancer Epidemiology Biomarkers and Prevention, 2005, 14, 2384-2390.	1.1	64
58	Familial Non-VHL Clear Cell (Conventional) Renal Cell Carcinoma: Clinical Features, Segregation Analysis, and Mutation Analysis of <i>FLCN</i> . Clinical Cancer Research, 2008, 14, 5925-5930.	3.2	64
59	Sporadic multiple primary melanoma cases:CDKN2Agermline mutations with a founder effect. Genes Chromosomes and Cancer, 2001, 32, 195-202.	1.5	63
60	Testing for BRCA1 mutations: a cost-effectiveness analysis. European Journal of Human Genetics, 2002, 10, 599-606.	1.4	58
61	BRCA Share: A Collection of Clinical BRCA Gene Variants. Human Mutation, 2016, 37, 1318-1328.	1.1	57
62	<i>PARKIN</i> Inactivation Links Parkinson's Disease to Melanoma. Journal of the National Cancer Institute, 2016, 108, djv340.	3.0	56
63	Germline <i>SUFU</i> mutation carriers and medulloblastoma: clinical characteristics, cancer risk, and prognosis. Neuro-Oncology, 2018, 20, 1122-1132.	0.6	52
64	BRAF as a melanoma susceptibility candidate gene?. Cancer Research, 2003, 63, 3061-5.	0.4	52
65	Incomplete penetrance of the predisposition to medulloblastoma associated with germ-line SUFU mutations. Journal of Medical Genetics, 2010, 47, 142-144.	1.5	51
66	Comprehensive analysis of CDKN2A (p16INK4A/p14ARF) and CDKN2B genes in 53 melanoma index cases considered to be at heightened risk of melanoma. Journal of Medical Genetics, 2005, 43, 39-47.	1.5	50
67	Distinct deregulation of the hypoxia inducible factor by PHD2 mutants identified in germline DNA of patients with polycythemia. Haematologica, 2012, 97, 9-14.	1.7	50
68	Individuals with presumably hereditary uveal melanoma do not harbour germline mutations in the coding regions of either the P16INK4A, P14ARF or cdk4 genes. British Journal of Cancer, 2000, 82, 818-822.	2.9	47
69	Genetic and environmental factors in cutaneous malignant melanoma. Biochimie, 2002, 84, 67-74.	1.3	47
70	Gene expression signature associated with <i>BRAF</i> mutations in human primary cutaneous melanomas. Molecular Oncology, 2008, 1, 425-430.	2.1	47
71	Common Variants at the 19p13.1 and <i>ZNF365</i> Loci Are Associated with ER Subtypes of Breast Cancer and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2012, 21, 645-657.	1.1	47
72	Cutaneous phenotype andMC1R variants as modifying factors for the development of melanoma inCDKN2A G101W mutation carriers from 4 countries. International Journal of Cancer, 2007, 121, 825-831.	2.3	45

#	Article	IF	CITATIONS
73	Guidelines for reporting secondary findings of genome sequencing in cancer genes: the SFMPP recommendations. European Journal of Human Genetics, 2018, 26, 1732-1742.	1.4	44
74	p53 STATUS DOES NOT PREDICT INITIAL CLINICAL RESPONSE TO BACILLUS CALMETTE-GUERIN INTRAVESICAL THERAPY IN T1 BLADDER TUMORS. Journal of Urology, 1998, 159, 1079-1084.	0.2	43
75	Real-time PCR-based gene dosage assay for detecting BRCA1 rearrangements in breast-ovarian cancer families. Clinical Genetics, 2004, 65, 131-136.	1.0	42
76	Correlation betweenp53 gene expression and tumor-cell proliferation in oropharyngeal cancer. International Journal of Cancer, 1994, 57, 458-462.	2.3	41
77	Functional, structural, and genetic evaluation of 20 <i>CDKN2A</i> germ line mutations identified in melanoma-prone families or patients. Human Mutation, 2009, 30, 564-574.	1.1	38
78	A germline mutation in <i>PBRM1</i> predisposes to renal cell carcinoma. Journal of Medical Genetics, 2015, 52, 426-430.	1.5	38
79	BRCA1, BRCA2, TP53, and CDKN2A germline mutations in patients with breast cancer and cutaneous melanoma. Familial Cancer, 2007, 6, 453-461.	0.9	36
80	Lack of referral for genetic counseling and testing in BRCA1/2 and Lynch syndromes: a nationwide study based on 240,134 consultations and 134,652 genetic tests. Breast Cancer Research and Treatment, 2013, 141, 135-144.	1.1	35
81	Mapping and ranking of potential cytotoxic T epitopes in the p53 protein: effect of mutations and polymorphism on peptide binding to purified and refolded HLA molecules. European Journal of Immunology, 1995, 25, 1638-1642.	1.6	34
82	Association of the <i>POT1</i> Germline Missense Variant p.178T With Familial Melanoma. JAMA Dermatology, 2019, 155, 604.	2.0	34
83	Common variants of the BRCA1 wild-type allele modify the risk of breast cancer in BRCA1 mutation carriers. Human Molecular Genetics, 2011, 20, 4732-4747.	1.4	32
84	Genetic Evidence of a Precisely Tuned Dysregulation in the Hypoxia Signaling Pathway during Oncogenesis. Cancer Research, 2014, 74, 6554-6564.	0.4	32
85	CDKN2A as a uveal and cutaneous melanoma susceptibility gene. Genes Chromosomes and Cancer, 2003, 38, 265-268.	1.5	31
86	Four novel RET germline variants in exons 8 and 11 display an oncogenic potential in vitro. European Journal of Endocrinology, 2010, 162, 771-777.	1.9	28
87	Tracking of Second Primary Melanomas in Vemurafenib-Treated Patients. JAMA Dermatology, 2013, 149, 488.	2.0	28
88	A germline oncogenic MITF mutation and tumor susceptibility. European Journal of Cell Biology, 2014, 93, 71-75.	1.6	28
89	IMPACT OF GENE PATENTS ON THE COST-EFFECTIVE DELIVERY OF CARE: THE CASE OF BRCA1 GENETIC TESTING. International Journal of Technology Assessment in Health Care, 2003, 19, 287-300.	0.2	27
90	Breast cancer risk inBRCA1 andBRCA2 mutation carriers and polyglutamine repeat length in theAIB1 gene. International Journal of Cancer, 2005, 117, 230-233.	2.3	27

#	Article	IF	CITATIONS
91	International distribution and age estimation of the Portuguese BRCA2 c.156_157insAlu founder mutation. Breast Cancer Research and Treatment, 2011, 127, 671-679.	1.1	27
92	Deciphering the Role of Oncogenic MITFE318K in Senescence Delay and Melanoma Progression. Journal of the National Cancer Institute, 2017, 109, .	3.0	27
93	Familial melanoma: Clinical factors associated with germline CDKN2A mutations according to the number of patients affected by melanoma in a family. Journal of the American Academy of Dermatology, 2012, 67, 1257-1264.e2.	0.6	26
94	The contribution of large genomic deletions at the CDKN2A locus to the burden of familial melanoma. British Journal of Cancer, 2008, 99, 364-370.	2.9	25
95	A single Mediterranean, possibly Jewish, origin for the Val59Gly CDKN2A mutation in four melanoma-prone families. European Journal of Human Genetics, 2003, 11, 288-296.	1.4	24
96	Relationship between genome and epigenome - challenges and requirements for future research. BMC Genomics, 2014, 15, 487.	1.2	24
97	Melanoma Risk and Melanocyte Biology. Acta Dermato-Venereologica, 2020, 100, adv00139.	0.6	24
98	Primary leptomeningeal melanoma is part of the BAP1-related cancer syndrome. Acta Neuropathologica, 2015, 129, 921-923.	3.9	23
99	Structure-activity relationships in glucocorticoid-induced apoptosis in T lymphocytes. Biochemical Pharmacology, 1995, 50, 103-110.	2.0	22
100	Contribution of CDKN2A/P16 INK4A, P14 ARF, CDK4 and BRCA1/2 germline mutations in individuals with suspected genetic predisposition to uveal melanoma. Familial Cancer, 2010, 9, 663-667.	0.9	22
101	Characteristics, Treatment, and Outcome of Breast Cancers Diagnosed in BRCA1 and BRCA2 Gene Mutation Carriers in Intensive Screening Programs Including Magnetic Resonance Imaging. Clinical Breast Cancer, 2010, 10, 113-118.	1.1	22
102	Characteristics of the coexistence of melanoma and renal cell carcinoma. Cancer, 2010, 116, 5716-5724.	2.0	22
103	Candidate Genetic Modifiers for Breast and Ovarian Cancer Risk in <i>BRCA1</i> and <i>BRCA2</i> Mutation Carriers. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 308-316.	1.1	22
104	Activating point mutations in cyclin-dependent kinase 4 are not seen in sporadic pituitary adenomas, insulinomas or Leydig cell tumours. Journal of Endocrinology, 2003, 178, 301-310.	1.2	21
105	Combining Homologous Recombination and Phosphopeptide-binding Data to Predict the Impact of <i>BRCA1</i> BRCT Variants on Cancer Risk. Molecular Cancer Research, 2019, 17, 54-69.	1.5	21
106	Germline <i>CDKN2A</i> /P16INK4A mutations contribute to genetic determinism of sarcoma. Journal of Medical Genetics, 2017, 54, 607-612.	1.5	19
107	Genetic transmission of susceptibility to cancer in families of children with soft tissue sarcomas. , 1996, 78, 1483-1491.		18
108	Patterns of familial aggregation of three melanoma risk factors: great number of naevi, light phototype and high degree of sun exposure. International Journal of Epidemiology, 2000, 29, 408-415.	0.9	18

#	Article	IF	CITATIONS
109	Soft Tissue Sarcomas. Journal of Clinical Oncology, 2004, 22, 2029-2031.	0.8	18
110	Diversity of the clinical presentation of the MMR gene biallelic mutations. Familial Cancer, 2014, 13, 131-135.	0.9	18
111	Occurrence of <i>BAP1</i> germline mutations in cutaneous melanocytic tumors with loss of BAP1â€expression: A pilot study. Genes Chromosomes and Cancer, 2017, 56, 691-694.	1.5	18
112	Germline Variation at CDKN2A and Associations with Nevus Phenotypes amongÂMembers of Melanoma Families. Journal of Investigative Dermatology, 2017, 137, 2606-2612.	0.3	18
113	Response to systemic therapy in fumarate hydratase–deficient renal cell carcinoma. European Journal of Cancer, 2021, 151, 106-114.	1.3	18
114	Factors Associated with Altered Long-Term Well-Being After Prophylactic Salpingo-Oophorectomy Among Women at Increased Hereditary Risk for Breast and Ovarian Cancer. Oncologist, 2011, 16, 1250-1257.	1.9	17
115	Clinical relevance of 8q23, 15q13 and 18q21 SNP genotyping to evaluate colorectal cancer risk. European Journal of Human Genetics, 2016, 24, 99-105.	1.4	17
116	Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT. Journal of the American Academy of Dermatology, 2019, 81, 386-394.	0.6	17
117	FBXO32 links ubiquitination to epigenetic reprograming of melanoma cells. Cell Death and Differentiation, 2021, 28, 1837-1848.	5.0	17
118	The 5′-untranslated region of p16INK4a melanoma tumor suppressor acts as a cellular IRES, controlling mRNA translation under hypoxia through YBX1 binding. Oncotarget, 2015, 6, 39980-39994.	0.8	17
119	The <i>MITF</i> , p.E318K Variant, as a Risk Factor for Pheochromocytoma and Paraganglioma. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 4764-4768.	1.8	16
120	Optimization of Next-Generation Sequencing Technologies for von Hippel Lindau (VHL) Mosaic Mutation Detection and Development of Confirmation Methods. Journal of Molecular Diagnostics, 2019, 21, 462-470.	1.2	16
121	MC1R variants in childhood and adolescent melanoma: a retrospective pooled analysis of a multicentre cohort. The Lancet Child and Adolescent Health, 2019, 3, 332-342.	2.7	16
122	The predictive ability of the 313 variant–based polygenic risk score for contralateral breast cancer risk prediction in women of European ancestry with a heterozygous BRCA1 or BRCA2 pathogenic variant. Genetics in Medicine, 2021, 23, 1726-1737.	1.1	16
123	eMelanoBase: An online locus-specific variant database for familial melanoma. Human Mutation, 2003, 21, 2-7.	1.1	15
124	Genital and anorectal mucosal melanoma is associated with cutaneous melanoma in patients and in families. British Journal of Dermatology, 2013, 169, 594-599.	1.4	15
125	Multiple skin hamartomata: a possible novel clinical presentation of SUFU neoplasia syndrome. Familial Cancer, 2015, 14, 151-155.	0.9	15
126	GEMO, a National Resource to Study Genetic Modifiers of Breast and Ovarian Cancer Risk in BRCA1 and BRCA2 Pathogenic Variant Carriers. Frontiers in Oncology, 2018, 8, 490.	1.3	14

#	Article	IF	CITATIONS
127	Absence of microsatellite instability in thyroid carcinomas. European Journal of Cancer, 1995, 31, 128.	1.3	13
128	Search for germline alterations in CDKN2A/ARF and CDK4 of 42 Jewish melanoma families with or without neural system tumours. British Journal of Cancer, 2005, 92, 2278-2285.	2.9	13
129	Phenotypic and Histopathological Tumor Characteristics According to CDKN2A Mutation Status among Affected Members ofAMelanoma Families. Journal of Investigative Dermatology, 2016, 136, 1066-1069.	0.3	13
130	Hereditary breast cancer associated with a germline BRCA2 mutation in identical female twins with similar disease expression. Cancer Genetics and Cytogenetics, 2002, 133, 24-28.	1.0	12
131	New founder germline mutations ofCDKN2A in melanoma-prone families and multiple primary melanoma development in a patient receiving levodopa treatment. Genes Chromosomes and Cancer, 2007, 46, 751-760.	1.5	12
132	Germline mutations in the new E1' cryptic exon of the <i>VHL</i> gene in patients with tumours of von Hippel-Lindau disease spectrum or with paraganglioma. Journal of Medical Genetics, 2020, 57, 752-759.	1.5	12
133	Germline Mutations of Inhibins in Earlyâ€Onset Ovarian Epithelial Tumors. Human Mutation, 2014, 35, 294-297.	1.1	11
134	Protective effect of copy number polymorphism of glutathione S-transferase T1 gene on melanoma risk in presence of CDKN2A mutations, MC1R variants and host-related phenotypes. Familial Cancer, 2009, 8, 371-377.	0.9	10
135	Absence of somatic alterations of the EB1 gene adenomatous polyposis coli-associated protein in human sporadic colorectal cancers. British Journal of Cancer, 1998, 78, 1356-1360.	2.9	9
136	Association between germ cell tumours, large numbers of naevi, atypical naevi and melanoma. Melanoma Research, 2001, 11, 117-122.	0.6	9
137	The <i><scp>CDKN</scp>2A/p16</i> <scp>^{<i>INK</i>}</scp> ^{<i>4a</i>} 5′ <scp>UTR</scp> sequence and translational regulation: impact of novel variants predisposing to melanoma. Pigment Cell and Melanoma Research, 2016, 29, 210-221.	1.5	9
138	Integrative analysis of dysregulated microRNAs and mRNAs in multiple recurrent synchronized renal tumors from patients with von Hippel-Lindau disease. International Journal of Oncology, 2018, 53, 1455-1468.	1.4	9
139	Non-Hodgkin's lymphomas and myeloid disorders: deletions associated with t(2;5) and t(3;5) detected by FISH. Leukemia, 1998, 12, 1159-1162.	3.3	8
140	Novel <i>FH</i> mutation in a patient with cutaneous leiomyomatosis associated with cutis verticis gyrata, eruptive collagenoma and Charcot-Marie-Tooth disease. British Journal of Dermatology, 2010, 163, 1337-1339.	1.4	8
141	Novel germline <i>MET pathogenic variants in French patients with papillary renal cell carcinomas type I</i> . Human Mutation, 2022, 43, 316-327.	1.1	8
142	Improvement of Genetic Testing for Cutaneous Melanoma in Countries With Low to Moderate Incidence. JAMA Dermatology, 2017, 153, 1122.	2.0	7
143	Germline mutation in the NBR1 gene involved in autophagy detected in a family with renal tumors. Cancer Genetics, 2021, 258-259, 51-56.	0.2	5
144	Genetic Testing for Melanoma—Where Are We With Moderate-Penetrance Genes?. JAMA Dermatology, 2016, 152, 375.	2.0	2

#	Article	IF	CITATIONS
145	The PI3K/mTOR Pathway Is Targeted by Rare Germline Variants in Patients with Both Melanoma and Renal Cell Carcinoma. Cancers, 2021, 13, 2243.	1.7	2
146	ls Systemic Disease in the Coelomic Epithelium Associated With BRCA1 Germline Mutations?. Journal of the National Cancer Institute, 2004, 96, 488-489.	3.0	1
147	Prise en charge des formes familiales de tumeurs rares : mélanomes familiaux et primitifs multiples. Oncologie, 2008, 10, 411-414.	0.2	Ο