
Julien Le Roux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7298246/publications.pdf Version: 2024-02-01

IIIIIEN LE ROUX

#	Article	IF	CITATIONS
1	Efficient Peroxydisulfate Activation Process Not Relying on Sulfate Radical Generation for Water Pollutant Degradation. Environmental Science & Technology, 2014, 48, 5868-5875.	4.6	634
2	Chloramination of nitrogenous contaminants (pharmaceuticals and pesticides): NDMA and halogenated DBPs formation. Water Research, 2011, 45, 3164-3174.	5.3	168
3	Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment?. Chemosphere, 2019, 218, 1050-1060.	4.2	166
4	Formation of Brominated Disinfection Byproducts from Natural Organic Matter Isolates and Model Compounds in a Sulfate Radical-Based Oxidation Process. Environmental Science & Technology, 2014, 48, 14534-14542.	4.6	139
5	Formation of NDMA and Halogenated DBPs by Chloramination of Tertiary Amines: The Influence of Bromide Ion. Environmental Science & Technology, 2012, 46, 1581-1589.	4.6	109
6	NDMA Formation by Chloramination of Ranitidine: Kinetics and Mechanism. Environmental Science & amp; Technology, 2012, 46, 11095-11103.	4.6	105
7	Influence of dissolved organic matter on the removal of 12 organic micropollutants from wastewater effluent by powdered activated carbon adsorption. Water Research, 2020, 172, 115487.	5.3	93
8	Formation of Haloacetonitriles, Haloacetamides, and Nitrogenous Heterocyclic Byproducts by Chloramination of Phenolic Compounds. Environmental Science & Technology, 2017, 51, 655-663.	4.6	71
9	Chloramination of wastewater effluent: Toxicity and formation of disinfection byproducts. Journal of Environmental Sciences, 2017, 58, 135-145.	3.2	67
10	The role of aromatic precursors in the formation of haloacetamides by chloramination of dissolved organic matter. Water Research, 2016, 88, 371-379.	5.3	49
11	Benefits of ozonation before activated carbon adsorption for the removal of organic micropollutants from wastewater effluents. Chemosphere, 2020, 245, 125530.	4.2	49
12	Tracing disinfection byproducts in full-scale desalination plants. Desalination, 2015, 359, 141-148.	4.0	43
13	Fluorescence excitation/emission matrices as a tool to monitor the removal of organic micropollutants from wastewater effluents by adsorption onto activated carbon. Water Research, 2021, 190, 116749.	5.3	23
14	Influence of the properties of 7 micro-grain activated carbons on organic micropollutants removal from wastewater effluent. Chemosphere, 2020, 243, 125306.	4.2	17
15	Micropollutants in Urban Runoff from Traffic Areas: Target and Non-Target Screening on Four Contrasted Sites. Water (Switzerland), 2022, 14, 394.	1.2	17
16	Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis. Scientific Data, 2021, 8, 223.	2.4	14
17	Evaluation of Sample Preparation Methods for Non-Target Screening of Organic Micropollutants in Urban Waters Using High-Resolution Mass Spectrometry. Molecules, 2021, 26, 7064.	1.7	12
18	Assessment of leaching risk of trace metals, PAHs and PCBs from a brownfield located in a flooding zone. Environmental Science and Pollution Research, 2022, 29, 3600-3615.	2.7	7

#	Article	IF	CITATIONS
19	Road Runoff Characterization: Ecotoxicological Assessment Combined with (Non-)Target Screenings of Micropollutants for the Identification of Relevant Toxicants in the Dissolved Phase. Water (Switzerland), 2022, 14, 511.	1.2	7
20	High-Resolution Mass Spectrometry Screening of Wastewater Effluent for Micropollutants and Their Transformation Products during Disinfection with Performic Acid. ACS ES&T Water, 2022, 2, 1225-1233.	2.3	3
21	Evaluation of contaminant retention in the soil of sustainable drainage systems: methodological reflections on the determination of sorption isotherms. Blue-Green Systems, 2019, 1, 1-17.	0.6	1