Xiao Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7298089/publications.pdf

Version: 2024-02-01

516710 501196 32 829 16 28 h-index citations g-index papers 33 33 33 1036 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Investigation of MXenes as oxygen reduction electrocatalyst for selective H2O2 generation. Nano Research, 2022, 15, 3927-3932.	10.4	30
2	Pulsed Vacuum Drying of Pepper (Capsicum annuum L.): Effect of High-Humidity Hot Air Impingement Blanching Pretreatment on Drying Kinetics and Quality Attributes. Foods, 2022, 11, 318.	4.3	16
3	Coupling Co–N–C with MXenes Yields Highly Efficient Catalysts for H ₂ O ₂ Production in Acidic Media. ACS Applied Materials & Samp; Interfaces, 2022, 14, 11350-11358.	8.0	19
4	Two contradictory facades of $\langle i \rangle N \langle i \rangle$ -acetylcysteine activity towards renal carcinoma cells. Journal of Taibah University for Science, 2022, 16, 423-431.	2.5	2
5	Tuning Coal into Graphene-Like Nanocarbon for Electrochemical H ₂ O ₂ Production with Nearly 100% Faraday Efficiency. ACS Sustainable Chemistry and Engineering, 2021, 9, 9369-9375.	6.7	37
6	Hybrid Cell Structure for Wideband CMUT: Design Method and Characteristic Analysis. Micromachines, 2021, 12, 1180.	2.9	4
7	Covalent-driven Layer-by-layer Self-assembly of Clindamycin-loaded PPLA Nanoparticles/chitosan Membrane on Titanium Sheet for Longacting Anti-infection. Current Nanoscience, 2021, 17, 789-795.	1.2	2
8	Research on Novel CMUTs for Detecting Micro-Pressure with Ultra-High Sensitivity and Linearity. Micromachines, 2021, 12, 1340.	2.9	1
9	UV-responsive AKBA@ZnO nanoparticles potential for polymorphous light eruption protection and therapy. Materials Science and Engineering C, 2020, 107, 110254.	7.3	8
10	Nanoscale ZnO-based photosensitizers for photodynamic therapy. Photodiagnosis and Photodynamic Therapy, 2020, 30, 101694.	2.6	48
11	Targeted drug delivery systems for bladder cancer therapy. Journal of Drug Delivery Science and Technology, 2020, 56, 101535.	3.0	17
12	Biocompatible chitosan-modified core-shell Fe3O4 nanocomposites for exigent removal of blood lactic acid. Nano Express, 2020, 1, 010055.	2.4	1
13	Protective Effects of Moderate Ca Supplementation against Cd-Induced Bone Damage under Different Population-Relevant Doses in Young Female Rats. Nutrients, 2019, 11, 849.	4.1	10
14	Transdermal BQ-788/EA@ZnO quantum dots as targeting and smart tyrosinase inhibitors in melanocytes. Materials Science and Engineering C, 2019, 102, 45-52.	7.3	4
15	On-demand drug release and re-absorption from pirarubicin loaded Fe ₃ O ₄ @ZnO core–shell nanoparticles for targeting infusion chemotherapy for urethral carcinoma. Materials Express, 2019, 9, 467-474.	0.5	24
16	UVA Irradiation Enhances Brusatol-Mediated Inhibition of Melanoma Growth by Downregulation of the Nrf2-Mediated Antioxidant Response. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	35
17	Smart Eryc@mZnO Nanoparticles with Enhanced Antibacterial Activity Under Ultraviolet and Prolonged Antibacterial Activity Without Ultraviolet. Nanoscience and Nanotechnology Letters, 2018, 10, 1572-1577.	0.4	8
18	Nrf2- and Bach1 May Play a Role in the Modulation of Ultraviolet A-Induced Oxidative Stress by Acetyl-11-Keto-β-Boswellic Acid in Skin Keratinocytes. Skin Pharmacology and Physiology, 2017, 30, 13-23.	2.5	23

#	Article	IF	CITATIONS
19	A biocompatible and magnetic nanocarrier with a safe UV-initiated docetaxel release and cancer secretion removal properties increases therapeutic potential for skin cancer. Materials Science and Engineering C, 2017, 76, 579-585.	7.3	7
20	ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. International Journal of Pharmaceutics, 2017, 534, 190-194.	5.2	74
21	P(BA-co-HBA) Coated Fe ₃ O ₄ @ZnO Nanoparticles as Photo-Responsive Multifunctional Drug Delivery Systems for Safer Cancer Therapy. Nano, 2016, 11, 1650057.	1.0	8
22	Fe ₃ O ₄ @ZnO core-shell nanocomposites for efficient and repetitive removal of low density lipoprotein in plasma and on blood vessel. Nanotechnology, 2015, 26, 125101.	2.6	22
23	Theoretical study on the sequential reduction and oxidation mechanism for tetrabromobisphenol A degradation under photocatalytic UV/Fenton conditions. Theoretical Chemistry Accounts, 2015, 134, 1.	1.4	6
24	Theoretical study on catalyzed selective photoreduction mechanism for 4-bromobenzaldehyde in two different solvents. Physical Chemistry Chemical Physics, 2015, 17, 19997-20005.	2.8	2
25	Docetaxel grafted magnetic nanoparticles as dual-therapeutic agentia for targeting perfusion therapy of urethral carcinoma. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	5
26	Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Materials Science and Engineering C, 2014, 42, 325-332.	7.3	48
27	UV and dark-triggered repetitive release and encapsulation of benzophenone-3 from biocompatible ZnO nanoparticles potential for skin protection. Nanoscale, 2013, 5, 5596.	5.6	26
28	Effect of alcohol pretreatment in conjunction with atmospheric pressure plasmas on hydrophobizing ramie fiber surfaces. Journal of Adhesion Science and Technology, 2013, 27, 1278-1288.	2.6	12
29	Asymmetric Ring Opening of <i>meso</i> â€Epoxides with Aromatic Amines Catalyzed by a New Prolineâ€Based <i>N</i> , <i>N′</i> â€Dioxideâ€Indium Tris(triflate) Complex. Advanced Synthesis and Catalysis, 2008, 350, 385-390.	, 4.3	59
30	A Chiral Functionalized Salt atalyzed Asymmetric Michael Addition of Ketones to Nitroolefins. Advanced Synthesis and Catalysis, 2007, 349, 2156-2166.	4.3	65
31	Enantioselective Cyanosilylation of Ketones Catalyzed by a Nitrogen-Containing Bifunctional Catalyst. Advanced Synthesis and Catalysis, 2006, 348, 538-544.	4.3	74
32	Asymmetric Strecker Reaction of Ketoimines Catalyzed by a Novel Chiral BifunctionalN,N′-Dioxide. Advanced Synthesis and Catalysis, 2006, 348, 2579-2584.	4.3	81