
Xiong Gong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/729765/publications.pdf Version: 2024-02-01

XIONE CONE

#	Article	IF	CITATIONS
1	A mechanistic survey of Alzheimer's disease. Biophysical Chemistry, 2022, 281, 106735.	1.5	34
2	Solution-processed bulk heterojunction broadband photodetectors based on perovskites incorporated with PbSe quantum dots. Organic Electronics, 2022, 101, 106410.	1.4	3
3	Bulk heterojunction perovskite solar cells incorporated with p-type low optical gap conjugated polymers. Nano Energy, 2022, 93, 106907.	8.2	12
4	Solution-processed broadband photodetectors without transparent conductive oxide electrodes. Journal of Materials Chemistry C, 2022, 10, 2783-2791.	2.7	4
5	Highâ€Performance Ternary Perovskite–Organic Solar Cells. Advanced Materials, 2022, 34, e2109348.	11.1	34
6	Effect of External Magnetic Field on Bulk Heterojunction Polymer Solar Cells. Macromolecular Rapid Communications, 2022, , 2100933.	2.0	2
7	Origins of the Photocurrent Multiplication Effect in the Polythiopheneâ€Based Photodetectors. Macromolecular Rapid Communications, 2022, , 2100928.	2.0	0
8	Stable and efficient perovskite solar cells by discrete two-dimensional perovskites capped on the three-dimensional perovskites bilayer thin film. Nano Energy, 2022, 96, 107126.	8.2	14
9	Recent progress in the allâ€solidâ€state flexible supercapacitors. SmartMat, 2022, 3, 349-383.	6.4	21
10	Solution-Processed Ternary Perovskite-Organic Broadband Photodetectors with Ultrahigh Detectivity. ACS Applied Materials & Interfaces, 2022, 14, 18744-18750.	4.0	17
11	Efficient and Stable Perovskite Solar Cells by B-Site Compositional Engineered All-Inorganic Perovskites and Interface Passivation. ACS Applied Materials & Interfaces, 2022, 14, 19469-19479.	4.0	13
12	Repurposing of intestinal defensins as multi-target, dual-function amyloid inhibitors <i>via</i> cross-seeding. Chemical Science, 2022, 13, 7143-7156.	3.7	6
13	Conjugated molecule based 2D perovskites for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2021, 9, 21910-21917.	5.2	8
14	Repurposing a Cardiovascular Disease Drug of Cloridarol as hIAPP Inhibitor. ACS Chemical Neuroscience, 2021, 12, 1419-1427.	1.7	15
15	Lowâ€dimensional perovskite materials and their optoelectronics. InformaÄnÃ-MateriÃily, 2021, 3, 1039-10	698.5	39
16	Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 34168-34177.	4.0	16
17	Machine Learning-Enabled Repurposing and Design of Antifouling Polymer Brushes. Chemical Engineering Journal, 2021, 420, 129872.	6.6	17
18	Molecular Engineering of Polyaniline with Ultrathin Polydopamine and Monolayer Graphene for All-Solid-State Flexible Microsupercapacitors. ACS Applied Energy Materials, 2021, 4, 10069-10080.	2.5	5

#	Article	IF	CITATIONS
19	A negative piezo-conductive effect from doped semiconducting polymer thin films. Scientific Reports, 2021, 11, 18222.	1.6	3
20	A General Crosslinker Strategy to Realize Intrinsic Frozen Resistance of Hydrogels. Advanced Materials, 2021, 33, e2104006.	11.1	82
21	Two-/Three-Dimensional Perovskite Bilayer Thin Films Post-Treated with Solvent Vapor for High-Performance Perovskite Photovoltaics. ACS Applied Materials & Interfaces, 2021, 13, 49104-49113.	4.0	12
22	High performance perovskites solar cells by hybrid perovskites co-crystallized with poly(ethylene) Tj ETQq0 0 0 rg	gBT Overlo 8.2	ock 10 Tf 50

23	Multiple Physical Bonds to Realize Highly Tough and Self-Adhesive Double-Network Hydrogels. ACS Applied Polymer Materials, 2020, 2, 1031-1042.	2.0	39
24	Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS Applied Bio Materials, 2020, 3, 8286-8308.	2.3	20
25	Enhanced thermoelectric performance of F4-TCNQ doped FASnI ₃ thin films. Journal of Materials Chemistry A, 2020, 8, 25431-25442.	5.2	25
26	All-Solid-State Asymmetric Supercapacitors with Novel Ionic Liquid Gel Electrolytes. ACS Applied Electronic Materials, 2020, 2, 3906-3914.	2.0	12
27	The compositional engineering of organic–inorganic hybrid perovskites for high-performance perovskite solar cells. Emergent Materials, 2020, 3, 727-750.	3.2	10
28	Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. Journal of Materials Chemistry A, 2020, 8, 20474-20485.	5.2	147
29	Wireless portable light-weight self-charging power packs by perovskite-organic tandem solar cells integrated with solid-state asymmetric supercapacitors. Nano Energy, 2020, 78, 105397.	8.2	32
30	Poly(Ethylene Glycol) Diacrylate as the Passivation Layer for High-Performance Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 45045-45055.	4.0	24
31	Novel Quasi-2D Perovskites for Stable and Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 51744-51755.	4.0	34
32	Recent Advancements and Challenges for Low-Toxicity Perovskite Materials. ACS Applied Materials & Interfaces, 2020, 12, 26776-26811.	4.0	89
33	High-Performance Perovskite Solar Cells by One-Step Self-Assembled Perovskite-Polymer Thin Films. ACS Applied Energy Materials, 2020, 3, 5902-5912.	2.5	23
34	Enhanced Device Performance of Perovskite Photovoltaics by Magnetic Fieldâ€Aligned Perovskitesâ€Magnetic Nanoparticles Composite Thin Film. Advanced Functional Materials, 2020, 30, 2002808.	7.8	10
35	Solution-Processed Polymeric Thin Film as the Transparent Electrode for Flexible Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 15456-15463.	4.0	16
36	Molecular simulations and understanding of antifouling zwitterionic polymer brushes. Journal of Materials Chemistry B, 2020, 8, 3814-3828.	2.9	78

#	Article	IF	CITATIONS
37	Computational Investigation of Antifouling Property of Polyacrylamide Brushes. Langmuir, 2020, 36, 2757-2766.	1.6	25
38	Bulk heterojunction perovskite solar cells incorporated with solution-processed TiOx nanoparticles as the electron acceptors. Chinese Chemical Letters, 2020, 31, 2249-2253.	4.8	11
39	Solutionâ€Processed Flexible Broadband Photodetectors with Solutionâ€Processed Transparent Polymeric Electrode. Advanced Functional Materials, 2020, 30, 1909487.	7.8	61
40	Ultrasensitive and high gain solution-processed perovskite photodetectors by CH3NH3PbI2.55Br0.45:Zn2SnO4 bulk heterojunction composite. Emergent Materials, 2020, 3, 1-7.	3.2	10
41	Simple Thermal Pretreatment Strategy to Tune Mechanical and Antifouling Properties of Zwitterionic Hydrogels. Langmuir, 2019, 35, 1828-1836.	1.6	22
42	Two-Dimensional Conjugated Polymeric Nanocrystals for Organic Electronics. ACS Applied Electronic Materials, 2019, 1, 1458-1464.	2.0	9
43	Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. Journal of Materials Chemistry B, 2019, 7, 5762-5774.	2.9	48
44	Bulk Heterojunction Perovskite Solar Cells Incorporated with Zn ₂ SnO ₄ Nanoparticles as the Electron Acceptors. ACS Applied Materials & Interfaces, 2019, 11, 34020-34029.	4.0	38
45	Allâ€Solidâ€State Asymmetric Supercapacitors with Metal Selenides Electrodes and Ionic Conductive Composites Electrolytes. Advanced Functional Materials, 2019, 29, 1904182.	7.8	45
46	Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. ACS Applied Materials & amp; Interfaces, 2019, 11, 40163-40171.	4.0	17
47	Functionality of Nonâ€Fullerene Electron Acceptors in Ternary Organic Solar Cells. Solar Rrl, 2019, 3, 1900322.	3.1	26
48	Solution-Processed Ultrahigh Detectivity Photodetectors by Hybrid Perovskite Incorporated with Heterovalent Neodymium Cations. ACS Omega, 2019, 4, 15873-15878.	1.6	13
49	Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations. Nano Energy, 2019, 61, 352-360.	8.2	89
50	Organic field-effect optical waveguides: a new break-through all organic optoelectronics. Science China Chemistry, 2019, 62, 293-294.	4.2	2
51	Ultrasensitive Solution-Processed Broadband PbSe Photodetectors through Photomultiplication Effect. ACS Applied Materials & amp; Interfaces, 2019, 11, 9205-9212.	4.0	28
52	A zwitterionic polymer as an interfacial layer for efficient and stable perovskite solar cells. RSC Advances, 2019, 9, 30317-30324.	1.7	13
53	Fundamentals of cross-seeding of amyloid proteins: an introduction. Journal of Materials Chemistry B, 2019, 7, 7267-7282.	2.9	87
54	Allâ€5olidâ€5tate Flexible Asymmetric Supercapacitors Fabricated by the Binderâ€Free Hydrophilic Carbon Cloth@MnO ₂ and Hydrophilic Carbon Cloth@Polypyrrole Electrodes. Advanced Electronic Materials, 2019, 5, 1800721.	2.6	39

#	Article	IF	CITATIONS
55	Genistein: A Dual Inhibitor of Both Amyloid β and Human Islet Amylin Peptides. ACS Chemical Neuroscience, 2018, 9, 1215-1224.	1.7	80
56	Cesium-Doped Vanadium Oxide as the Hole Extraction Layer for Efficient Perovskite Solar Cells. ACS Omega, 2018, 3, 1117-1125.	1.6	42
57	Efficient Perovskite Solar Cells Fabricated by Co Partially Substituted Hybrid Perovskite. Advanced Energy Materials, 2018, 8, 1703178.	10.2	98
58	Solution-processed broadband polymer photodetectors with a spectral response of up to 2.5 μm by a low bandgap donor–acceptor conjugated copolymer. Journal of Materials Chemistry C, 2018, 6, 3634-3641.	2.7	79
59	Roomâ€Temperatureâ€Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Singleâ€Wall Carbon Nanotubes. Advanced Functional Materials, 2018, 28, 1705541.	7.8	69
60	Efficient Perovskite Solar Cells with Reduced Photocurrent Hysteresis through Tuned Crystallinity of Hybrid Perovskite Thin Films. ACS Omega, 2018, 3, 7069-7076.	1.6	8
61	Ultrasensitive Perovskite Photodetectors by Co Partially Substituted Hybrid Perovskite. ACS Sustainable Chemistry and Engineering, 2018, 6, 12055-12060.	3.2	18
62	Enhanced thermoelectric properties of two-dimensional conjugated polymers. Emergent Materials, 2018, 1, 67-76.	3.2	20
63	Efficient Polymer Solar Cells by Lithium Sulfonated Polystyrene as a Charge Transport Interfacial Layer. ACS Applied Materials & Interfaces, 2017, 9, 5348-5357.	4.0	33
64	Efficient Organic Solar Cells with Polymer-Small Molecule: Fullerene Ternary Active Layers. ACS Omega, 2017, 2, 1786-1794.	1.6	11
65	Ni _{0.85} Se@MoSe ₂ Nanosheet Arrays as the Electrode for High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 17067-17075.	4.0	220
66	Solution-processed vanadium oxide thin film as the hole extraction layer for efficient hysteresis-free perovskite hybrid solar cells. Organic Electronics, 2017, 47, 85-93.	1.4	29
67	Inverted polymer solar cells with Zn 2 SnO 4 nanoparticles as the electron extraction layer. Chinese Chemical Letters, 2017, 28, 1755-1759.	4.8	3
68	Seed-Induced Heterogeneous Cross-Seeding Self-Assembly of Human and Rat Islet Polypeptides. ACS Omega, 2017, 2, 784-792.	1.6	25
69	Perovskite hybrid solar cells with a fullerene derivative electron extraction layer. Journal of Materials Chemistry C, 2017, 5, 4190-4197.	2.7	24
70	Comparative Study of Graphene Hydrogels and Aerogels Reveals the Important Role of Buried Water in Pollutant Adsorption. Environmental Science & Technology, 2017, 51, 12283-12292.	4.6	114
71	Radical polymers as interfacial layers in inverted hybrid perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 23831-23839.	5.2	44
72	A solution-processed near-infrared polymer: PbS quantum dot photodetectors. RSC Advances, 2017, 7, 34633-34637.	1.7	17

#	Article	IF	CITATIONS
73	Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive PEDOT:PSS Hole Transport Layer. Advanced Energy Materials, 2016, 6, 1501773.	10.2	133
74	Synthesis of mediumâ€bandgap Ï€â€Conjugated polymers based on isomers of 5â€Alkylphenanthridinâ€6(5H)â€ and 6â€Alkoxylphenanthridine. Journal of Polymer Science Part A, 2016, 54, 2119-2127.	one 2.5	10
75	Efficient Perovskite Hybrid Photovoltaics via Alcoholâ€Vapor Annealing Treatment. Advanced Functional Materials, 2016, 26, 101-110.	7.8	117
76	Inverted organic photovoltaic cells. Chemical Society Reviews, 2016, 45, 2937-2975.	18.7	185
77	PbS quantum dots-induced trap-assisted charge injection in perovskite photodetectors. Nano Energy, 2016, 30, 27-35.	8.2	91
78	A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states. Journal of Materials Chemistry B, 2016, 4, 5814-5824.	2.9	62
79	Highly electrically conductive polyethylenedioxythiophene thin films for thermoelectric applications. Journal of Materials Chemistry A, 2016, 4, 12730-12738.	5.2	20
80	Harnessing Structure–Property Relationshipsfor Poly(alkyl thiophene)–Fullerene Derivative Thin Filmsto Optimize Performance in Photovoltaic Devices. Advanced Functional Materials, 2016, 26, 1908-1920.	7.8	7
81	Confined molecular motion across liquid/liquid interfaces in a triphasic reaction towards free-standing conductive polymer tube arrays. Journal of Materials Chemistry A, 2016, 4, 6290-6294.	5.2	7
82	Interfacial engineering for high performance organic photovoltaics. Materials Today, 2016, 19, 169-177.	8.3	31
83	Solution-processed VO _x prepared using a novel synthetic method as the hole extraction layer for polymer solar cells. Journal of Materials Chemistry C, 2016, 4, 1953-1958.	2.7	14
84	High Performance Perovskite Hybrid Solar Cells with E-beam-Processed TiO _{<i>x</i>} Electron Extraction Layer. ACS Applied Materials & Interfaces, 2016, 8, 1876-1883.	4.0	40
85	Low bandgap semiconducting polymers for polymeric photovoltaics. Chemical Society Reviews, 2016, 45, 4825-4846.	18.7	461
86	Efficient Perovskite Hybrid Solar Cells via Ionomer Interfacial Engineering. Advanced Functional Materials, 2015, 25, 6875-6884.	7.8	57
87	Optimizing Lightâ€Harvesting Polymers via Side Chain Engineering. Advanced Functional Materials, 2015, 25, 6458-6469.	7.8	33
88	Efficient Inverted Polymer Solar Cells Through Modified Electron Extraction Layer. IEEE Journal of Photovoltaics, 2015, 5, 912-916.	1.5	7
89	Efficient Small-Molecule-Based Inverted Organic Solar Cells With Conjugated Polyelectrolyte as a Cathode Interlayer. IEEE Journal of Photovoltaics, 2015, 5, 1118-1124.	1.5	5
90	Efficient Perovskite Hybrid Solar Cells Through a Homogeneous Highâ€Quality Organolead Iodide Layer. Small, 2015, 11, 3369-3376.	5.2	47

#	Article	IF	CITATIONS
91	Single-Junction Polymer Solar Cells with Over 10% Efficiency by a Novel Two-Dimensional Donor–Acceptor Conjugated Copolymer. ACS Applied Materials & Interfaces, 2015, 7, 4928-4935.	4.0	256
92	Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy and Environmental Science, 2015, 8, 1245-1255.	15.6	252
93	Efficiencies of perovskite hybrid solar cells influenced by film thickness and morphology of CH3NH3PbI3â°'xClx layer. Organic Electronics, 2015, 21, 19-26.	1.4	56
94	Polymorphic Associations and Structures of the Cross-Seeding of Aβ _{1–42} and hIAPP _{1–37} Polypeptides. Journal of Chemical Information and Modeling, 2015, 55, 1628-1639.	2.5	28
95	Interfacial interaction and lateral association of cross-seeding assemblies between hIAPP and rIAPP oligomers. Physical Chemistry Chemical Physics, 2015, 17, 10373-10382.	1.3	27
96	Enhanced Thermoelectric Properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by Binary Secondary Dopants. ACS Applied Materials & Interfaces, 2015, 7, 8984-8989.	4.0	93
97	Selfâ€Powered Electronics by Integration of Flexible Solidâ€State Grapheneâ€Based Supercapacitors with High Performance Perovskite Hybrid Solar Cells. Advanced Functional Materials, 2015, 25, 2420-2427.	7.8	142
98	Tuning the ambipolar charge transport properties of N-heteropentacenes by their frontier molecular orbital energy levels. Journal of Materials Chemistry C, 2015, 3, 4188-4196.	2.7	33
99	Ultrasensitive solution-processed perovskite hybrid photodetectors. Journal of Materials Chemistry C, 2015, 3, 6600-6606.	2.7	104
100	Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells. Scientific Reports, 2015, 5, 9265.	1.6	52
101	Efficient Solutionâ€Processed Bulk Heterojunction Perovskite Hybrid Solar Cells. Advanced Energy Materials, 2015, 5, 1402024.	10.2	99
102	Understanding the Halogenation Effects in Diketopyrrolopyrrole-Based Small Molecule Photovoltaics. ACS Applied Materials & Interfaces, 2015, 7, 19914-19922.	4.0	37
103	Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2015, 7, 23932-23940.	4.0	77
104	Efficient Perovskite Hybrid Solar Cells via Controllable Crystallization Film Morphology. IEEE Journal of Photovoltaics, 2015, 5, 1402-1407.	1.5	4
105	Ultrasensitive solution-processed broad-band photodetectors using CH ₃ NH ₃ Pbl ₃ perovskite hybrids and PbS quantum dots as light harvesters. Nanoscale, 2015, 7, 16460-16469.	2.8	106
106	High Performance Planar Heterojunction Perovskite Solar Cells with Fullerene Derivatives as the Electron Transport Layer. ACS Applied Materials & Interfaces, 2015, 7, 1153-1159.	4.0	99
107	Efficient polymer solar cells fabricated from solvent processing additive solution. Journal of Materials Chemistry C, 2015, 3, 26-32.	2.7	17
108	Room-Temperature, Solution-Processed MoO _{<i>x</i>} Thin Film as a Hole Extraction Layer to Substitute PEDOT/PSS in Polymer Solar Cells. ACS Photonics, 2014, 1, 87-90.	3.2	20

#	Article	IF	CITATIONS
109	Protonation process of conjugated polyelectrolytes on enhanced power conversion efficiency in the inverted polymer solar cells. Journal of Photonics for Energy, 2014, 4, 043099.	0.8	7
110	High-detectivity inverted near-infrared polymer photodetectors using cross-linkable conjugated polyfluorene as an electron extraction layer. Journal of Materials Chemistry C, 2014, 2, 9592-9598.	2.7	38
111	Conductive Water/Alcohol-Soluble Neutral Fullerene Derivative as an Interfacial Layer for Inverted Polymer Solar Cells with High Efficiency. ACS Applied Materials & Interfaces, 2014, 6, 14189-14195.	4.0	22
112	Cross-Sequence Interactions between Human and Rat Islet Amyloid Polypeptides. Langmuir, 2014, 30, 5193-5201.	1.6	20
113	Enhanced Performance of Polymer Solar Cells using PEDOT:PSS Doped with Fe ₃ O ₄ Magnetic Nanoparticles Aligned by an External Magnetostatic Field as an Anode Buffer Layer. ACS Applied Materials & Interfaces, 2014, 6, 13201-13208.	4.0	30
114	The influence of binary processing additives on the performance of polymer solar cells. Nanoscale, 2014, 6, 14297-14304.	2.8	51
115	A solution-processable diketopyrrolopyrrole dye molecule with (fluoronaphthyl)thienyl endgroups for organic solar cells. Dyes and Pigments, 2014, 101, 51-57.	2.0	40
116	Highâ€Performance Inverted Organic Photovoltaics with Over 1â€Î¼m Thick Active Layers. Advanced Energy Materials, 2014, 4, 1400378.	10.2	83
117	Probing structure–antifouling activity relationships of polyacrylamides and polyacrylates. Biomaterials, 2013, 34, 4714-4724.	5.7	77
118	Towards high performance inverted polymer solar cells. Current Opinion in Chemical Engineering, 2013, 2, 125-131.	3.8	7
119	Molecular Weight Effect on the Efficiency of Polymer Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 12163-12167.	4.0	111
120	Water-soluble CdTe quantum dots as an anode interlayer for solution-processed near infrared polymer photodetectors. Nanoscale, 2013, 5, 12474.	2.8	24
121	Fine-Tuning of Fluorinated Thieno[3,4-b]thiophene Copolymer for Efficient Polymer Solar Cells. Journal of Physical Chemistry C, 2013, 117, 4358-4363.	1.5	38
122	Solution-Processed High-Detectivity Near-Infrared Polymer Photodetectors Fabricated by a Novel Low-Bandgap Semiconducting Polymer. Journal of Physical Chemistry C, 2013, 117, 6537-6543.	1.5	63
123	Pyridinium salt-based molecules as cathode interlayers for enhanced performance in polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 3387.	5.2	43
124	Dual Functionality of Antimicrobial and Antifouling of Poly(<i>N</i> -hydroxyethylacrylamide)/Salicylate Hydrogels. Langmuir, 2013, 29, 1517-1524.	1.6	95
125	A Series of New Mediumâ€Bandgap Conjugated Polymers Based on Naphtho[1,2â€e:5,6â€e]bis(2â€octylâ€{1,2,3]triazole) for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 3683-3688.	11.1	125
126	Solution-Processed Fe ₃ O ₄ Magnetic Nanoparticle Thin Film Aligned by an External Magnetostatic Field as a Hole Extraction Layer for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 10325-10330.	4.0	51

#	Article	IF	CITATIONS
127	Zinc Oxide Nanowire As an Electron-Extraction Layer for Broadband Polymer Photodetectors with an Inverted Device Structure. Journal of Physical Chemistry C, 2012, 116, 13650-13653.	1.5	44
128	Solution-Processed Ultrasensitive Polymer Photodetectors with High External Quantum Efficiency and Detectivity. ACS Applied Materials & amp; Interfaces, 2012, 4, 3701-3705.	4.0	57
129	Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy and Environmental Science, 2012, 5, 8208.	15.6	616
130	Solution-processed near-infrared polymer photodetectors with an inverted device structure. Organic Electronics, 2012, 13, 2929-2934.	1.4	45
131	Toward high performance inverted polymer solar cells. Polymer, 2012, 53, 5437-5448.	1.8	59
132	Organic photoresponse materials and devices. Chemical Society Reviews, 2012, 41, 1754-1808.	18.7	570
133	Polymer Solar Cells with a Lowâ€Temperatureâ€Annealed Sol–Gelâ€Derived MoO _x Film as a Hole Extraction Layer. Advanced Energy Materials, 2012, 2, 523-527.	10.2	97
134	A Supramolecular "Doubleâ€Cable―Structure with a 129 ₄₄ Helix in a Columnar Porphyrinâ€C ₆₀ Dyad and its Application in Polymer Solar Cells. Advanced Energy Materials, 2012, 2, 1375-1382.	10.2	43
135	Highly efficient polymer solar cells based on poly(carbazole-alt-thiophene-benzofurazan). New Journal of Chemistry, 2012, 36, 2042.	1.4	42
136	Polymer solar cells with an inverted device configuration using polyhedral oligomeric silsesquioxane-[60]fullerene dyad as a novel electron acceptor. Science China Chemistry, 2012, 55, 749-754.	4.2	15
137	Large open-circuit voltage polymer solar cells by poly(3-hexylthiophene) with multi-adducts fullerenes. Science China Chemistry, 2012, 55, 743-748.	4.2	6
138	Inverted polymer solar cells with a solution-processed zinc oxide thin film as an electron collection layer. Science China Chemistry, 2012, 55, 755-759.	4.2	14
139	Synthesis of Tetrachloro-azapentacene as an Ambipolar Organic Semiconductor with High and Balanced Carrier Mobilities. Organic Letters, 2011, 13, 2880-2883.	2.4	83
140	Solvent Effect Leading to High Performance of Bulk Heterojunction Polymer Solar Cells by Novel Polysilafluorene Derivatives. Journal of Physical Chemistry C, 2011, 115, 2314-2319.	1.5	18
141	Polymer bulk heterojunction solar cells: function and utility of inserting a hole transport and electron blocking layer into the device structure. Journal of Materials Chemistry, 2011, 21, 1365-1367.	6.7	35
142	Donor–Acceptor Conjugated Polymer Based on Naphtho[1,2- <i>c</i> :5,6- <i>c</i>]bis[1,2,5]thiadiazole for High-Performance Polymer Solar Cells. Journal of the American Chemical Society, 2011, 133, 9638-9641.	6.6	598
143	Bulk Heterojunction Solar Cells with Large Open ircuit Voltage: Electron Transfer with Small Donorâ€Acceptor Energy Offset. Advanced Materials, 2011, 23, 2272-2277.	11.1	242
144	Efficient, Air‣table Bulk Heterojunction Polymer Solar Cells Using MoO _x as the Anode Interfacial Layer. Advanced Materials, 2011, 23, 2226-2230.	11.1	587

#	Article	IF	CITATIONS
145	A Porphyrin–Fullerene Dyad with a Supramolecular "Doubleâ€Cable―Structure as a Novel Electron Acceptor for Bulk Heterojunction Polymer Solar Cells. Advanced Materials, 2011, 23, 2951-2956.	11.1	83
146	Bulk Heterojunction Solar Cells with Large Open-Circuit Voltage: Electron Transfer with Small Donor-Acceptor Energy Offset (Adv. Mater. 20/2011). Advanced Materials, 2011, 23, 2271-2271.	11.1	3
147	Strain and Hückel Aromaticity: Driving Forces for a Promising New Generation of Electron Acceptors in Organic Electronics. Angewandte Chemie - International Edition, 2010, 49, 532-536.	7.2	278
148	Novel conjugated alternating copolymer based on 2,7-carbazole and 2,1,3-benzoselenadiazole. Polymer, 2010, 51, 3196-3202.	1.8	50
149	Polymer solar cells: Recent development and possible routes for improvement in the performance. Solar Energy Materials and Solar Cells, 2010, 94, 114-127.	3.0	440
150	An Electrochemical Supersandwich Assay for Sensitive and Selective DNA Detection in Complex Matrices. Journal of the American Chemical Society, 2010, 132, 14346-14348.	6.6	214
151	High and Balanced Hole and Electron Mobilities from Ambipolar Thin-Film Transistors Based on Nitrogen-Containing Oligoacences. Journal of the American Chemical Society, 2010, 132, 16349-16351.	6.6	215
152	Solution-Processed Zinc Oxide Thin Film as a Buffer Layer for Polymer Solar Cells with an Inverted Device Structure. Journal of Physical Chemistry C, 2010, 114, 6849-6853.	1.5	198
153	Novel Silafluorene-Based Conjugated Polymers with Pendant Acceptor Groups for High Performance Solar Cells. Macromolecules, 2010, 43, 5262-5268.	2.2	134
154	Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10837-10841.	3.3	505
155	Label-Free, Dual-Analyte Electrochemical Biosensors: A New Class of Molecular-Electronic Logic Gates. Journal of the American Chemical Society, 2010, 132, 8557-8559.	6.6	117
156	On the Binding of Cationic, Water-Soluble Conjugated Polymers to DNA: Electrostatic and Hydrophobic Interactions. Journal of the American Chemical Society, 2010, 132, 1252-1254.	6.6	82
157	Semiconducting Polymer Photodetectors with Electron and Hole Blocking Layers: High Detectivity in the Near-Infrared. Sensors, 2010, 10, 6488-6496.	2.1	90
158	Longâ€Lifetime Polymer Lightâ€Emitting Electrochemical Cells Fabricated with Crosslinked Holeâ€Transport Layers. Advanced Materials, 2009, 21, 1972-1975.	11.1	65
159	Nanowire Crystals of a Rigid Rod Conjugated Polymer. Journal of the American Chemical Society, 2009, 131, 17315-17320.	6.6	141
160	High-Detectivity Polymer Photodetectors with Spectral Response from 300 nm to 1450 nm. Science, 2009, 325, 1665-1667.	6.0	1,649
161	Phosphorescence from iridium complexes doped into polymer blends. Journal of Applied Physics, 2004, 95, 948-953.	1.1	114
162	White Light Electrophosphorescence from Polyfluorene-Based Light-Emitting Diodes:Â Utilization of Fluorenone Defectsâ€. Journal of Physical Chemistry B, 2004, 108, 8601-8605.	1.2	71

#	Article	IF	CITATIONS
163	Excitation energy transfer from polyfluorene to fluorenone defects. Synthetic Metals, 2004, 141, 17-20.	2.1	54
164	High-performance polymer-based electrophosphorescent light-emitting diodes. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2691-2705.	2.4	31
165	Red electrophosphorescence from polymer doped with iridium complex. Applied Physics Letters, 2002, 81, 3711-3713.	1.5	136
166	Biosensors from conjugated polyelectrolyte complexes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 49-53.	3.3	277
167	The Role of Ruthenium and Rhenium Diimine Complexes in Conjugated Polymers That Exhibit Interesting Opto-Electronic Properties. Chemistry - A European Journal, 2001, 7, 4358-4367.	1.7	85
168	Effect of γ-ray irradiation on structures and luminescent properties of nanocrystalline MSO4:xEu3+ (M=Ca,Sr,Ba; x=0.001–0.005). Journal of Physics and Chemistry of Solids, 2000, 61, 115-121.	1.9	68
169	Electronic and Light-Emitting Properties of Some Polyimides Based on Bis(2,2â€~:6â€~,2â€~ â€~-terpyridine) Ruthenium(II) Complex. Chemistry of Materials, 1999, 11, 1165-1170.	3.2	97
170	Light-emitting multifunctional rhenium (I) and ruthenium (II) 2,2′-bipyridyl complexes with bipolar character. Applied Physics Letters, 1999, 75, 3920-3922.	1.5	90
171	Synthesis and electronic properties of conjugated polymers based on rhenium or ruthenium dipyridophenazine complexes. Journal of Materials Chemistry, 1999, 9, 2103.	6.7	50
172	Trifunctional Light-Emitting Molecules Based on Rhenium and Ruthenium Bipyridine Complexes. Advanced Materials, 1998, 10, 1337-1340.	11.1	155
173	Synthesis and Characterization of Poly(benzobisoxazole)s and Poly(benzobisthiazole)s with 2,2â€~-Bipyridyl Units in the Backbone. Macromolecules, 1998, 31, 5639-5646.	2.2	62
174	Photoconductivity and charge transporting properties of metal-containing poly(p-phenylenevinylene)s. Applied Physics Letters, 1997, 71, 2919-2921.	1.5	39
175	Quinoxaline-based conjugated polymers containing ruthenium(II) bipyridine metal complex. Macromolecular Rapid Communications, 1997, 18, 1009-1016.	2.0	23