Yann S Dufour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7297397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Alkaline pH Increases Swimming Speed and Facilitates Mucus Penetration for Vibrio cholerae. Journal of Bacteriology, 2021, 203, .	1.0	12
2	Changes in Cell Size and Shape during 50,000 Generations of Experimental Evolution with Escherichia coli. Journal of Bacteriology, 2021, 203, .	1.0	39
3	Cell density, alignment, and orientation correlate with C-signal–dependent gene expression during <i>Myxococcus xanthus</i> development. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
4	<i>>Vibrio cholerae</i> adapts to sessile and motile lifestyles by cyclic di-GMP regulation of cell shape. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 29046-29054.	3.3	21
5	Tumble Suppression Is a Conserved Feature of Swarming Motility. MBio, 2020, 11, .	1.8	10
6	<i>Escherichia coli</i> Remodels the Chemotaxis Pathway for Swarming. MBio, 2019, 10, .	1.8	49
7	Hook length of the bacterial flagellum is optimized for maximal stability of the flagellar bundle. PLoS Biology, 2018, 16, e2006989.	2.6	31
8	Direct Correlation between Motile Behavior and Protein Abundance in Single Cells. PLoS Computational Biology, 2016, 12, e1005041.	1.5	60
9	Nonâ€genetic diversity modulates population performance. Molecular Systems Biology, 2016, 12, 895.	3.2	59
10	Limits of Feedback Control in Bacterial Chemotaxis. PLoS Computational Biology, 2014, 10, e1003694.	1.5	65
11	Adaptability of non-genetic diversity in bacterial chemotaxis. ELife, 2014, 3, .	2.8	90
12	Convergence of the Transcriptional Responses to Heat Shock and Singlet Oxygen Stresses. PLoS Genetics, 2012, 8, e1002929.	1.5	42
13	Signal Correlations in Ecological Niches Can Shape the Organization and Evolution of Bacterial Gene Regulatory Networks. Advances in Microbial Physiology, 2012, 61, 1-36.	1.0	6
14	Extracytoplasmic function σ factors of the widely distributed group ECF41 contain a fused regulatory domain. MicrobiologyOpen, 2012, 1, 194-213.	1.2	40
15	Conservation of thiolâ€oxidative stress responses regulated by SigR orthologues in actinomycetes. Molecular Microbiology, 2012, 85, 326-344.	1.2	65
16	Thermal Robustness: Lessons from Bacterial Chemotaxis. Current Biology, 2011, 21, R465-R468.	1.8	3
17	chipD: a web tool to design oligonucleotide probes for high-density tiling arrays. Nucleic Acids Research, 2010, 38, W321-W325.	6.5	23
18	H-NOX–mediated nitric oxide sensing modulates symbiotic colonization by <i>Vibrio fischeri</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8375-8380.	3.3	100

#	Article	IF	CITATIONS
19	Reconstruction of the Core and Extended Regulons of Global Transcription Factors. PLoS Genetics, 2010, 6, e1001027.	1.5	62
20	Organization and Evolution of the Biological Response to Singlet Oxygen Stress. Journal of Molecular Biology, 2008, 383, 713-730.	2.0	65
21	A microfluidic chemostat for experiments with bacterial and yeast cells. Nature Methods, 2005, 2, 685-689.	9.0	243