
Zhonglin Mou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7297157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A direct link between BR and SA signaling: negative regulation of TGA4 by BIN2. Molecular Plant, 2022, ,	8.3	2
2	Draft Genome Sequences of Pseudomonas syringae pv. tomato Strains J4 and J6, Isolated in Florida. Microbiology Resource Announcements, 2021, 10, .	0.6	0
3	Selection of transgenic citrus plants based on glyphosate tolerance conferred by a citrus 5-enolpyruvylshikimate-3-phosphate synthase variant. Plant Cell Reports, 2021, 40, 1947-1956.	5.6	2
4	Efficient artificial microRNA vectors for gene silencing in citrus. Plant Cell Reports, 2021, 40, 2449-2452.	5.6	0
5	Differential Quantitative Requirements for NPR1 Between Basal Immunity and Systemic Acquired Resistance in Arabidopsis thaliana. Frontiers in Plant Science, 2020, 11, 570422.	3.6	13
6	Efficient CRISPR/Cas9 genome editing with Citrus embryogenic cell cultures. BMC Biotechnology, 2020, 20, 58.	3.3	25
7	Editorial: NAD Metabolism and Signaling in Plants. Frontiers in Plant Science, 2020, 11, 146.	3.6	3
8	Perception of Damaged Self in Plants. Plant Physiology, 2020, 182, 1545-1565.	4.8	55
9	Extracellular pyridine nucleotides trigger plant systemic immunity through a lectin receptor kinase/BAK1 complex. Nature Communications, 2019, 10, 4810.	12.8	65
10	Novel Plastid-Nuclear Genome Combinations Enhance Resistance to Citrus Canker in Cybrid Grapefruit. Frontiers in Plant Science, 2019, 9, 1858.	3.6	9
11	Development of Improved Fruit, Vegetable, and Ornamental Crops Using the CRISPR/Cas9 Genome Editing Technique. Plants, 2019, 8, 601.	3.5	59
12	NPR1 as a transgenic crop protection strategy in horticultural species. Horticulture Research, 2018, 5, 15.	6.3	43
13	The Elongator complexâ€associated protein DRL1 plays a positive role in immune responses against necrotrophic fungal pathogens in Arabidopsis. Molecular Plant Pathology, 2018, 19, 286-299.	4.2	4
14	Exogenous Nicotinamide Adenine Dinucleotide Induces Resistance to Citrus Canker in Citrus. Frontiers in Plant Science, 2018, 9, 1472.	3.6	27
15	The Arabidopsis Elongator Subunit ELP3 and ELP4 Confer Resistance to Bacterial Speck in Tomato. Frontiers in Plant Science, 2018, 9, 1066.	3.6	11
16	The Arabidopsis Elongator complex is required for nonhost resistance against the bacterial pathogens <i>Xanthomonas citri</i> subsp. <i>citri</i> and <i>Pseudomonas syringae</i> pv. <i>phaseolicola </i> <scp>NPS</scp> 3121. New Phytologist, 2017, 214, 1245-1259.	7.3	19
17	Extracellular pyridine nucleotides as immune elicitors in arabidopsis. Plant Signaling and Behavior, 2017, 12, e1388977.	2.4	21
18	The Arabidopsis ELP3/ELO3 and ELP4/ELO1 genes enhance disease resistance in Fragaria vesca L. BMC Plant Biology, 2017, 17, 230.	3.6	15

ZHONGLIN MOU

#	Article	IF	CITATIONS
19	A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana. ELife, 2017, 6, .	6.0	76
20	The Mediator Complex Subunits MED14, MED15, and MED16 Are Involved in Defense Signaling Crosstalk in Arabidopsis. Frontiers in Plant Science, 2016, 7, 1947.	3.6	37
21	Abscisic acid promotes proteasomeâ€mediated degradation of the transcription coactivator <scp>NPR</scp> 1 in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 86, 20-34.	5.7	75
22	Elongator Plays a Positive Role in Exogenous NAD-Induced Defense Responses in Arabidopsis. Molecular Plant-Microbe Interactions, 2016, 29, 396-404.	2.6	21
23	Comparison of nicotinamide adenine dinucleotide phosphate-induced immune responses against biotrophic and necrotrophic pathogens in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2016, 11, e1169358.	2.4	8
24	Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens <i>Botrytis cinerea</i> and <i>Alternaria brassicicola</i> . Plant Journal, 2015, 83, 1019-1033.	5.7	44
25	The Arabidopsis NPR1 gene confers broad-spectrum disease resistance in strawberry. Transgenic Research, 2015, 24, 693-704.	2.4	51
26	Elongator and its epigenetic role in plant development and responses to abiotic and biotic stresses. Frontiers in Plant Science, 2015, 6, 296.	3.6	26
27	The Arabidopsis Mediator Complex Subunit16 Is a Key Component of Basal Resistance against the Necrotrophic Fungal Pathogen <i>Sclerotinia sclerotiorum</i> . Plant Physiology, 2015, 169, 856-872.	4.8	64
28	Salicylic Acid and Defense Responses in Plants. , 2014, , 191-219.		6
29	A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis. Frontiers in Plant Science, 2014, 5, 763.	3.6	23
30	Elongator subunit 3 positively regulates plant immunity through its histone acetyltransferase and radical S-adenosylmethionine domains. BMC Plant Biology, 2013, 13, 102.	3.6	57
31	The <scp>A</scp> rabidopsis <scp>M</scp> ediator complex subunits <scp>MED</scp> 14/ <scp>SWP</scp> and <scp>MED</scp> 16/ <scp>SFR</scp> 6/ <scp>IEN</scp> 1 differentially regulate defense gene expression in plant immune responses. Plant Journal, 2013, 75, 484-497.	5.7	76
32	The <i>Arabidopsis</i> Elongator Complex Subunit2 Epigenetically Regulates Plant Immune Responses Â. Plant Cell, 2013, 25, 762-776.	6.6	101
33	The function of the Mediator complex in plant immunity. Plant Signaling and Behavior, 2013, 8, e23182.	2.4	51
34	An Efficient Intragenic Vector for Generating Intragenic and Cisgenic Plants in Citrus. American Journal of Plant Sciences, 2013, 04, 2131-2137.	0.8	11
35	Expression of the Human NAD(P)-Metabolizing Ectoenzyme CD38 Compromises Systemic Acquired Resistance in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2012, 25, 1209-1218.	2.6	29
36	The <i>Arabidopsis</i> Mediator Complex Subunit16 Positively Regulates Salicylate-Mediated Systemic Acquired Resistance and Jasmonate/Ethylene-Induced Defense Pathways. Plant Cell, 2012, 24, 4294-4309.	6.6	157

ZHONGLIN MOU

#	Article	IF	CITATIONS
37	Non-Host Defense Response in a Novel Arabidopsis-Xanthomonas citri subsp. citri Pathosystem. PLoS ONE, 2012, 7, e31130.	2.5	24
38	Salicylic Acid and its Function in Plant Immunity ^F . Journal of Integrative Plant Biology, 2011, 53, 412-428.	8.5	440
39	The role of the Elongator complex in plants. Plant Signaling and Behavior, 2011, 6, 19-22.	2.4	18
40	Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. European Journal of Plant Pathology, 2010, 128, 91-100.	1.7	108
41	Elongator subunit 2 is an accelerator of immune responses in Arabidopsis thaliana. Plant Journal, 2010, 64, 511-523.	5.7	63
42	A high-throughput method for isolation of salicylic acid metabolic mutants. Plant Methods, 2010, 6, 21.	4.3	35
43	Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis. Journal of Plant Physiology, 2010, 167, 144-148.	3.5	66
44	Characterization of Arabidopsis 6-Phosphogluconolactonase T-DNA Insertion Mutants Reveals an Essential Role for the Oxidative Section of the Plastidic Pentose Phosphate Pathway in Plant Growth and Development. Plant and Cell Physiology, 2009, 50, 1277-1291.	3.1	56
45	Extracellular pyridine nucleotides induce <i>PR</i> gene expression and disease resistance in Arabidopsis. Plant Journal, 2009, 57, 302-312.	5.7	102
46	Deficiency in a cytosolic riboseâ€5â€phosphate isomerase causes chloroplast dysfunction, late flowering and premature cell death in <i>Arabidopsis</i> . Physiologia Plantarum, 2009, 137, 249-263.	5.2	32
47	Proteasome-Mediated Turnover of the Transcription Coactivator NPR1 Plays Dual Roles in Regulating Plant Immunity. Cell, 2009, 137, 860-872.	28.9	494
48	A rapid biosensor-based method for quantification of free and glucose-conjugated salicylic acid. Plant Methods, 2008, 4, 28.	4.3	97
49	Plant Immunity Requires Conformational Charges of NPR1 via S-Nitrosylation and Thioredoxins. Science, 2008, 321, 952-956.	12.6	964
50	Function of extracellular pyridine nucleotides in plant defense signaling. Plant Signaling and Behavior, 2008, 3, 1143-1145.	2.4	4
51	The Arabidopsis MAP kinase kinase 7. Plant Signaling and Behavior, 2008, 3, 272-274.	2.4	14
52	Overexpression of Arabidopsis <i>MAP kinase kinase 7</i> leads to activation of plant basal and systemic acquired resistance. Plant Journal, 2007, 52, 1066-1079.	5.7	130
53	Increased Expression of MAP KINASE KINASE7 Causes Deficiency in Polar Auxin Transport and Leads to Plant Architectural Abnormality in Arabidopsis. Plant Cell, 2006, 18, 308-320.	6.6	148
54	Inducers of Plant Systemic Acquired Resistance Regulate NPR1 Function through Redox Changes. Cell, 2003, 113, 935-944.	28.9	1,348

ZHONGLIN MOU

#	Article	IF	CITATIONS
55	Silencing of Phosphoethanolamine N-Methyltransferase Results in Temperature-Sensitive Male Sterility and Salt Hypersensitivity in Arabidopsis. Plant Cell, 2002, 14, 2031-2043.	6.6	122
56	Fine-mapping of an Arabidopsis cell death mutation locus. Science in China Series C: Life Sciences, 2000, 43, 138-145.	1.3	3
57	Deficiency in Fatty Acid Synthase Leads to Premature Cell Death and Dramatic Alterations in Plant Morphology. Plant Cell, 2000, 12, 405-417.	6.6	213
58	Deficiency in Fatty Acid Synthase Leads to Premature Cell Death and Dramatic Alterations in Plant Morphology. Plant Cell, 2000, 12, 405.	6.6	15
59	Monitoring gene expression by cDNA array. Science Bulletin, 1999, 44, 441-444.	1.7	5