Nancy Andrews

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7297137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A rapid micrqpreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Research, 1991, 19, 2499-2499.	6.5	2,268
2	Disorders of Iron Metabolism. New England Journal of Medicine, 1999, 341, 1986-1995.	13.9	1,693
3	Balancing Acts. Cell, 2004, 117, 285-297.	13.5	1,544
4	Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature, 2000, 403, 776-781.	13.7	1,491
5	The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metabolism, 2005, 1, 191-200.	7.2	1,006
6	Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nature Genetics, 2006, 38, 531-539.	9.4	921
7	Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1148-1153.	3.3	898
8	Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nature Genetics, 2008, 40, 569-571.	9.4	586
9	Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood, 2002, 100, 3776-3781.	0.6	572
10	Iron Homeostasis. Annual Review of Physiology, 2007, 69, 69-85.	5.6	557
11	Transferrin receptor is necessary for development of erythrocytes and the nervous system. Nature Genetics, 1999, 21, 396-399.	9.4	510
12	Autosomal-dominant hemochrom-atosis is associated with a mutation in the ferroportin (SLC11A3) gene. Journal of Clinical Investigation, 2001, 108, 619-623.	3.9	429
13	Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. Journal of Clinical Investigation, 2007, 117, 1933-1939.	3.9	401
14	Deletion of <i>Trpm7</i> Disrupts Embryonic Development and Thymopoiesis Without Altering Mg ²⁺ Homeostasis. Science, 2008, 322, 756-760.	6.0	379
15	Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature, 2007, 446, 92-96.	13.7	374
16	A mouse model of juvenile hemochromatosis. Journal of Clinical Investigation, 2005, 115, 2187-2191.	3.9	319
17	The Transferrin Receptor Modulates Hfe-Dependent Regulation of Hepcidin Expression. Cell Metabolism, 2008, 7, 205-214.	7.2	315
18	Hereditary Hemochromatosis Protein, HFE, Interaction with Transferrin Receptor 2 Suggests a Molecular Mechanism for Mammalian Iron Sensing. Journal of Biological Chemistry, 2006, 281, 28494-28498.	1.6	297

#	Article	IF	CITATIONS
19	TRP Channel Regulates EGFR Signaling in Hair Morphogenesis and Skin Barrier Formation. Cell, 2010, 141, 331-343.	13.5	287
20	Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis. Nature Genetics, 2003, 34, 97-101.	9.4	284
21	Ineffective erythropoiesis in \hat{l}^2 -thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood, 2007, 109, 5027-5035.	0.6	277
22	Regulatory defects in liver and intestine implicate abnormal hepcidin and Cybrd1 expression in mouse hemochromatosis. Nature Genetics, 2003, 34, 102-107.	9.4	274
23	Iron-dependent regulation of the divalent metal ion transporter. FEBS Letters, 2001, 509, 309-316.	1.3	269
24	Scara5 Is a Ferritin Receptor Mediating Non-Transferrin Iron Delivery. Developmental Cell, 2009, 16, 35-46.	3.1	264
25	The Maf transcription factors: regulators of differentiation. Trends in Biochemical Sciences, 1997, 22, 437-441.	3.7	254
26	The iron transporter DMT1. International Journal of Biochemistry and Cell Biology, 1999, 31, 991-994.	1.2	216
27	Comparison of the Interactions of Transferrin Receptor and Transferrin Receptor 2 with Transferrin and the Hereditary Hemochromatosis Protein HFE. Journal of Biological Chemistry, 2000, 275, 38135-38138.	1.6	214
28	Hepcidin as a therapeutic tool to limit iron overload and improve anemia in Î ² -thalassemic mice. Journal of Clinical Investigation, 2010, 120, 4466-4477.	3.9	202
29	Proinflammatory state, hepcidin, and anemia in older persons. Blood, 2010, 115, 3810-3816.	0.6	191
30	Anemia of inflammation: the hepcidin link. Current Opinion in Hematology, 2005, 12, 107-111.	1.2	169
31	Hepcidin antimicrobial peptide transgenic mice exhibit features of the anemia of inflammation. Blood, 2007, 109, 4038-4044.	0.6	162
32	Iron Is Essential for Neuron Development and Memory Function in Mouse Hippocampus. Journal of Nutrition, 2009, 139, 672-679.	1.3	159
33	The channel kinase, <i>TRPM7</i> , is required for early embryonic development. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E225-33.	3.3	153
34	Down-regulation of Bmp/Smad signaling by Tmprss6 is required for maintenance of systemic iron homeostasis. Blood, 2010, 115, 3817-3826.	0.6	145
35	Iron and Copper in Mitochondrial Diseases. Cell Metabolism, 2013, 17, 319-328.	7.2	142
36	Hfe deficiency increases susceptibility to cardiotoxicity and exacerbates changes in iron metabolism induced by doxorubicin. Blood, 2003, 102, 2574-2580.	0.6	139

#	Article	IF	CITATIONS
37	Divalent Metal Transporter 1 Regulates Iron-Mediated ROS and Pancreatic β Cell Fate in Response to Cytokines. Cell Metabolism, 2012, 16, 449-461.	7.2	133
38	Probucol prevents early coronary heart disease and death in the high-density lipoprotein receptor SR-BI/apolipoprotein E double knockout mouse. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7283-7288.	3.3	132
39	An Hfe-dependent pathway mediates hyposideremia in response to lipopolysaccharide-induced inflammation in mice. Nature Genetics, 2004, 36, 481-485.	9.4	108
40	Transferrin receptor 1 is differentially required in lymphocyte development. Blood, 2003, 102, 3711-3718.	0.6	103
41	Metal transporters and disease. Current Opinion in Chemical Biology, 2002, 6, 181-186.	2.8	94
42	Expression of the DMT1 (NRAMP2/DCT1) iron transporter in mice with genetic iron overload disorders. Blood, 2001, 97, 1138-1140.	0.6	90
43	Complexity of CNC Transcription Factors As Revealed by Gene Targeting of the Nrf3 Locus. Molecular and Cellular Biology, 2004, 24, 3286-3294.	1.1	87
44	A mutation in Sec15l1 causes anemia in hemoglobin deficit (hbd) mice. Nature Genetics, 2005, 37, 1270-1273.	9.4	86
45	A mutation in a mitochondrial transmembrane protein is responsible for the pleiotropic hematological and skeletal phenotype of flexed-tail (f/f) mice. Genes and Development, 2001, 15, 652-657.	2.7	84
46	The function of heme-regulated eIF2α kinase in murine iron homeostasis and macrophage maturation. Journal of Clinical Investigation, 2007, 117, 3296-3305.	3.9	81
47	Tmprss6 is a genetic modifier of the Hfe-hemochromatosis phenotype in mice. Blood, 2011, 117, 4590-4599.	0.6	80
48	Molecules in focus The NF-E2 transcription factor. International Journal of Biochemistry and Cell Biology, 1998, 30, 429-432.	1.2	78
49	Regulation of iron absorption in Hfe mutant mice. Blood, 2002, 100, 1465-1469.	0.6	78
50	The other physician-scientist problem: Where have all the young girls gone?. Nature Medicine, 2002, 8, 439-441.	15.2	78
51	Molecular control of iron metabolism. Best Practice and Research in Clinical Haematology, 2005, 18, 159-169.	0.7	78
52	Chronic hepcidin induction causes hyposideremia and alters the pattern of cellular iron accumulation in hemochromatotic mice. Blood, 2006, 107, 2952-2958.	0.6	75
53	p45 NF-E2 regulates expression of thromboxane synthase in megakaryocytes. EMBO Journal, 1997, 16, 5654-5661.	3.5	73
54	Transferrin is a major determinant of hepcidin expression in hypotransferrinemic mice. Blood, 2011, 117, 630-637.	0.6	71

#	Article	IF	CITATIONS
55	The Ins and Outs of Iron Homeostasis. Physiology, 2006, 21, 115-123.	1.6	69
56	Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle. EBioMedicine, 2015, 2, 1705-1717.	2.7	62
57	Genetic variation in Mon1a affects protein trafficking and modifies macrophage iron loading in mice. Nature Genetics, 2007, 39, 1025-1032.	9.4	61
58	Transferrin is required for early T-cell differentiation. Immunology, 2004, 112, 543-549.	2.0	56
59	Chapter 6 Iron Homeostasis and Erythropoiesis. Current Topics in Developmental Biology, 2008, 82, 141-167.	1.0	50
60	Skeletal muscle hemojuvelin is dispensable for systemic iron homeostasis. Blood, 2011, 117, 6319-6325.	0.6	50
61	Understanding Heme Transport. New England Journal of Medicine, 2005, 353, 2508-2509.	13.9	47
62	Hepcidin, a candidate modifier of the hemochromatosis phenotype in mice. Blood, 2004, 103, 2841-2843.	0.6	46
63	Late stage erythroid precursor production is impaired in mice with chronic inflammation. Haematologica, 2012, 97, 1648-1656.	1.7	43
64	A genetic view of iron homeostasis. Seminars in Hematology, 2002, 39, 227-234.	1.8	42
65	Climbing through Medicine's Glass Ceiling. New England Journal of Medicine, 2007, 357, 1887-1889.	13.9	42
66	Haptoglobin modifies the hemochromatosis phenotype in mice. Blood, 2005, 105, 3353-3355.	0.6	36
67	The molecular regulation of iron metabolism. The Hematology Journal, 2004, 5, 373-380.	2.0	34
68	Mining copper transport genes. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 6543-6545.	3.3	32
69	Contributions of β2-microglobulin–dependent molecules and lymphocytes to iron regulation: insights from HfeRag1-/- and β2mRag1-/- double knock-out mice. Blood, 2004, 103, 2847-2849.	0.6	31
70	Closing the Iron Gate. New England Journal of Medicine, 2012, 366, 376-377.	13.9	31
71	A mouse model of familial porphyria cutanea tarda. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 259-64.	3.3	30
72	When Is a Heme Transporter Not a Heme Transporter? When It's a Folate Transporter. Cell Metabolism, 2007, 5, 5-6.	7.2	29

#	Article	IF	CITATIONS
73	Genes determining blood cell traits. Nature Genetics, 2009, 41, 1161-1162.	9.4	29
74	Molecular insights into mechanisms of iron transport. Current Opinion in Hematology, 1999, 6, 61.	1.2	29
75	Novel Bacterial P-Type ATPases with Histidine-Rich Heavy-Metal-Associated Sequences. Biochemical and Biophysical Research Communications, 1994, 205, 1644-1650.	1.0	23
76	Hepcidin induction by transgenic overexpression of Hfe does not require the Hfe cytoplasmic tail, but does require hemojuvelin. Blood, 2010, 116, 5679-5687.	0.6	23
77	Mutation of Rubie, a Novel Long Non-Coding RNA Located Upstream of Bmp4, Causes Vestibular Malformation in Mice. PLoS ONE, 2012, 7, e29495.	1.1	23
78	Phage T3 DNA contains an exact copy of the 23 base-pair phage T7 RNA polymerase promoter sequence. Journal of Molecular Biology, 1981, 147, 41-53.	2.0	20
79	Uroporphyria in Hfe mutant mice given 5-aminolevulinate: A new model of Fe-mediated porphyria cutanea tarda. Hepatology, 2001, 33, 406-412.	3.6	20
80	Deficiency of heme-regulated eIF2Â kinase decreases hepcidin expression and splenic iron in HFE-/- mice. Haematologica, 2008, 93, 753-756.	1.7	20
81	Iron in Skin of Mice with Three Etiologies of Systemic Iron Overload. Journal of Investigative Dermatology, 2005, 125, 1200-1205.	0.3	19
82	Ferrit(in)ing Out New Mechanisms in Iron Homeostasis. Cell Metabolism, 2010, 12, 203-204.	7.2	17
83	Multiple Proteins Interact with the Nuclear Inhibitory Protein Repressor Element in the Human Interleukin-3 Promoter. Journal of Biological Chemistry, 1995, 270, 24572-24579.	1.6	16
84	Structure and regulation of the chicken erythroid δ-aminolevulinate synthase gene. Nucleic Acids Research, 1994, 22, 1226-1233.	6.5	14
85	Ectopic Expression of Transcription Factor NF-E2 Alters the Phenotype of Erythroid and Monoblastoid Cells. Journal of Biological Chemistry, 2000, 275, 25292-25298.	1.6	13
86	Case 21-2005. New England Journal of Medicine, 2005, 353, 189-198.	13.9	11
87	Molecular Characterization and Localization of the HumanMAFGGene. Genomics, 1997, 44, 147-149.	1.3	10
88	Inherited iron overload disorders. Current Opinion in Pediatrics, 2000, 12, 596-602.	1.0	10
89	ABCs of erythroid mitochondrial iron uptake. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16012-16013.	3.3	7
90	Iron metabolism in mice with partial frataxin deficiency. Cerebellum, 2003, 2, 146-153.	1.4	5

#	Article	IF	CITATIONS
91	Commentary on. Journal of Pediatric Hematology/Oncology, 1999, 21, 353-355.	0.3	4
92	Can we keep the "academic―in academic medicine?. Journal of Clinical Investigation, 2010, 120, 390-393.	3.9	4
93	Of mice and iron: ferroportin disease. Blood, 2007, 109, 4115-4115.	0.6	1
94	An Iron-Clad Role for Proteasomal Degradation. Cell Metabolism, 2011, 14, 281-282.	7.2	1
95	Pathophysiologic mechanisms of anemia of chronic disease. Postgraduate Medicine, 2004, 116, 017-022.	0.9	Ο
96	Genetic Loss of Tmprss6 Increases Effective Erythropoiesis in a Mouse Model of β-Thalassemia. Blood, 2012, 120, 482-482.	0.6	0