Geoffrey Hyde

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7296823/publications.pdf

Version: 2024-02-01

516710 580821 29 653 16 25 citations g-index h-index papers 31 31 31 496 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A PKC that controls polyphosphate levels, pinocytosis and exocytosis, regulates stationary phase onset in <i>Dictyostelium</i> . Journal of Cell Science, 2022, , .	2.0	3
2	Rapid whole cell imaging reveals a calcium-APPL1-dynein nexus that regulates cohort trafficking of stimulated EGF receptors. Communications Biology, 2021, 4, 224.	4.4	6
3	Levels of Heterochiasmy During <i>Arabidopsis</i> Development as Reported by Fluorescent Tagged Lines. G3: Genes, Genomes, Genetics, 2020, 10, 2103-2110.	1.8	4
4	A telomerase with novel non-canonical roles: TERT controls cellular aggregation and tissue size in Dictyostelium. PLoS Genetics, 2019, 15, e1008188.	3.5	6
5	The Neuropeptide Orexin-A Inhibits the GABAA Receptor by PKC and Ca2+/CaMKII-Dependent Phosphorylation of Its \hat{I}^21 Subunit. Journal of Molecular Neuroscience, 2017, 61, 459-467.	2.3	15
6	Brief temperature stress during reproductive stages alters meiotic recombination and somatic mutation rates in the progeny of Arabidopsis. BMC Plant Biology, 2017, 17, 103.	3.6	23
7	Retention of fluorescent probes during aldehyde-free anhydrous freeze-substitution. Journal of Microscopy, 2003, 210, 125-130.	1.8	8
8	Regulators of GTP-binding proteins cause morphological changes in the vacuole system of the filamentous fungus, Pisolithus tinctorius. Cytoskeleton, 2002, 51, 133-146.	4.4	18
9	Motile Tubular Vacuole Systems. , 2001, , 243-265.		9
10	ER-Tracker dye and BODIPY-brefeldin A differentiate the endoplasmic reticulum and Golgi bodies from the tubular-vacuole system in living hyphae of Pisolithus tinctorius. Journal of Microscopy, 2000, 197, 239-249.	1.8	78
11	Brefeldin A Affects Growth, Endoplasmic Reticulum, Golgi Bodies, Tubular Vacuole System, and Secretory Pathway in Pisolithus tinctorius. Fungal Genetics and Biology, 2000, 29, 95-106.	2.1	41
12	Microtubules, but not actin microfilaments, regulate vacuole motility and morphology in hyphae of Pisolithus tinctorius. Cytoskeleton, 1999, 42, 114-124.	4.4	41
13	Calcium Imaging: A Primer for Mycologists. Fungal Genetics and Biology, 1998, 24, 14-23.	2.1	12
14	Ca2+Gradients in Hyphae and Branches of Saprolegnia ferax. Fungal Genetics and Biology, 1997, 21, 238-251.	2.1	47
15	Uptake and compartmentalisation of fluorescent probes byPisolithus tinctorius hyphae: evidence for an anion transport mechanism at the tonoplast but not for fluid-phase endocytosis. Protoplasma, 1997, 199, 18-29.	2.1	54
16	Mycorrhiza movies. Mycorrhiza, 1997, 7, 167-169.	2.8	4
17	Vacuole motility and tubule-forming activity inPisolithus tinctorius hyphae are modified by environmental conditions. Protoplasma, 1997, 198, 85-92.	2.1	23
18	Chapter 1 Advances in High-Pressure and Plunge-Freeze Fixation. Methods in Cell Biology, 1995, 49, 3-19.	1.1	33

#	Article	IF	CITATIONS
19	Ca(2+)-dependent polarization of axis establishment in the tip-growing organism, Saprolegnia ferax, by gradients of the ionophore A23187. European Journal of Cell Biology, 1995, 67, 356-62.	3.6	16
20	The roles of Ca2+ and plasma membrane ion channels in hyphal tip growth of Neurospora crassa. Journal of Cell Science, 1995, 108 (Pt 11), 3405-17.	2.0	22
21	Capacity for microtubule reorganization and cell wall synthesis in cytoplasts of the green algaMougeotia. Protoplasma, 1994, 178, 11-17.	2.1	4
22	Cell surface antigens of Phytophthora spores: biological and taxonomic characterization. Protoplasma, 1994, 181, 213-232.	2.1	39
23	Cell surface antigens of Phytophthora spores: biological and taxonomic characterization. , 1994, , 213-232.		7
24	Microtubules regulate the generation of polarity in zoospores of Phytophthora cinnamomi. European Journal of Cell Biology, 1993, 62, 75-85.	3.6	33
25	Confocal microscopy of microtubule arrays in cryosectioned sporangia ofPhytophthora cinnamomi. Experimental Mycology, 1992, 16, 207-218.	1.6	32
26	Ultrastructure of zoosporogenesis in Phytophthora cinnamomi. Mycological Research, 1991, 95, 577-591.	2.5	31
27	Sporangial structure inPhytophthora is disrupted after high pressure freezing. Protoplasma, 1991, 165, 203-208.	2.1	11
28	Freeze substitution reveals a new model for sporangial cleavage in Phytophthora, a result with implications for cytokinesis in other eukaryotes. Journal of Cell Science, 1991, 100 (Pt 4), 735-46.	2.0	6
29	Microtubule arrays in regeneratingMougeotia protoplasts may be oriented by electric fields. Protoplasma, 1990, 158, 73-85.	2.1	27