
Zhongmin Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/729632/publications.pdf Version: 2024-02-01

ZHONGMIN YANG

#	Article	IF	CITATIONS
1	Multi-functional bismuth-doped bioglasses: combining bioactivity and photothermal response for bone tumor treatment and tissue repair. Light: Science and Applications, 2018, 7, 1.	7.7	301
2	400 mW ultrashort cavity low-noise single-frequency Yb^3+-doped phosphate fiber laser. Optics Letters, 2011, 36, 3708.	1.7	185
3	Three-Dimensional Laser-Assisted Patterning of Blue-Emissive Metal Halide Perovskite Nanocrystals inside a Glass with Switchable Photoluminescence. ACS Nano, 2020, 14, 3150-3158.	7.3	102
4	3ÂGHz, fundamentally mode-locked, femtosecond Yb-fiber laser. Optics Letters, 2012, 37, 3522.	1.7	94
5	Mesoscale engineering of photonic glass for tunable luminescence. NPG Asia Materials, 2016, 8, e318-e318.	3.8	72
6	Copper Doped Carbon Dots for Addressing Bacterial Biofilm Formation, Wound Infection, and Tooth Staining. ACS Nano, 2022, 16, 9479-9497.	7.3	63
7	Structured Scintillators for Efficient Radiation Detection. Advanced Science, 2022, 9, e2102439.	5.6	50
8	Recent Advances in Mechanoluminescence of Doped Zinc Sulfides. Laser and Photonics Reviews, 2021, 15, 2100276.	4.4	44
9	Ultrabroad Photoemission from an Amorphous Solid by Topochemical Reduction. Advanced Optical Materials, 2018, 6, 1801059.	3.6	36
10	Near-infrared mechanoluminescence crystals: a review. IScience, 2021, 24, 101944.	1.9	36
11	Real-time frequency-encoded spatiotemporal focusing through scattering media using a programmable 2D ultrafine optical frequency comb. Science Advances, 2020, 6, eaay1192.	4.7	34
12	Enhanced thermoelectric properties of polycrystalline Bi2Te3 core fibers with preferentially oriented nanosheets. APL Materials, 2018, 6, .	2.2	33
13	Phosphate glass-clad tellurium semiconductor core optical fibers. Journal of Alloys and Compounds, 2015, 633, 1-4.	2.8	32
14	Higher-Order Weyl-Exceptional-Ring Semimetals. Physical Review Letters, 2021, 127, 196801.	2.9	32
15	Selfâ€Powered Stretchable Mechanoluminescent Optical Fiber Strain Sensor. Advanced Intelligent Systems, 2021, 3, 2100035.	3.3	28
16	Ultralong tumor retention of theranostic nanoparticles with short peptide-enabled active tumor homing. Materials Horizons, 2019, 6, 1845-1853.	6.4	27
17	Coupling Localized Laser Writing and Nonlocal Recrystallization in Perovskite Crystals for Reversible Multidimensional Optical Encryption. Advanced Materials, 2022, 34, e2201413.	11.1	27
18	Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons. Nature Communications, 2021, 12, 67.	5.8	26

ZHONGMIN YANG

#	Article	IF	CITATIONS
19	A Honeycombâ€Like Bismuth/Manganese Oxide Nanoparticle with Mutual Reinforcement of Internal and External Response for Tripleâ€Negative Breast Cancer Targeted Therapy. Advanced Healthcare Materials, 2021, 10, e2100518.	3.9	25
20	Tm ³⁺ -doped barium gallo-germanate glass single-mode fiber with high gain per unit length for ultracompact 1.95 Âμm laser. Applied Physics Express, 2018, 11, 032701.	1.1	22
21	Visualizing Dynamic Performance of Lipid Droplets in a Parkinson's Disease Model via a Smart Photostable Aggregation-Induced Emission Probe. IScience, 2019, 21, 261-272.	1.9	22
22	Distribution and stabilization of bismuth NIR centers in Bi-doped aluminosilicate laser glasses by managing glass network structure. Journal of Materials Chemistry C, 2018, 6, 7814-7821.	2.7	21
23	Catalyticâ€Enhanced Lactoferrinâ€Functionalized Auâ€Bi ₂ Se ₃ Nanodots for Parkinson's Disease Therapy via Reactive Oxygen Attenuation and Mitochondrial Protection. Advanced Healthcare Materials, 2021, 10, e2100316.	3.9	21
24	Stretchable and Strain-Decoupled Fluorescent Optical Fiber Sensor for Body Temperature and Movement Monitoring. ACS Photonics, 2022, 9, 1415-1424.	3.2	19
25	Composite film with anisotropically enhanced optical nonlinearity for a pulse-width tunable fiber laser. Journal of Materials Chemistry C, 2018, 6, 1126-1135.	2.7	18
26	Tunable luminescence from bismuthâ€doped phosphate laser glass by engineering photonic glass structure. Journal of the American Ceramic Society, 2018, 101, 1916-1922.	1.9	18
27	Emerging and perspectives in microlasers based on rare-earth ions activated micro-/nanomaterials. Progress in Materials Science, 2021, 121, 100814.	16.0	18
28	Aggregated carbon dotsâ€loaded macrophages treat sepsis by eliminating multidrugâ€resistant bacteria and attenuating inflammation. Aggregate, 2023, 4, .	5.2	17
29	Efficient 2â€î¼m emission in Er3+/Ho3+ co-doped lead silicate glasses under different excitations. Optical Materials, 2018, 82, 147-153.	1.7	16
30	Multiphase Transition toward Colorless Bismuth–Germanate Scintillating Glass and Fiber for Radiation Detection. ACS Applied Materials & Interfaces, 2020, 12, 17752-17759.	4.0	16
31	Enhanced CW Lasing and Qâ€Switched Pulse Generation Enabled by Tm 3+ â€Doped Glass Ceramic Fibers. Advanced Optical Materials, 2021, 9, 2001774.	3.6	16
32	Erâ€Activated Hybridized Glass Fiber for Laser and Sensor in the Extended Wavebands. Advanced Optical Materials, 2021, 9, 2101394.	3.6	16
33	Hydrogel Optical Fiber Based Ratiometric Fluorescence Sensor for Highly Sensitive Ph Detection. Journal of Lightwave Technology, 2021, 39, 6653-6659.	2.7	15
34	Two micrometer fluorescence emission and energy transfer in Yb 3+ /Ho 3+ coâ€doped lead silicate glass. International Journal of Applied Glass Science, 2017, 8, 196-203.	1.0	13
35	Enhanced <scp>NIR</scp> photoemission from Biâ€doped aluminoborate glasses via topological tailoring of glass structure. Journal of the American Ceramic Society, 2019, 102, 1710-1719.	1.9	13
36	Tailoring microstructure and electrical transportation through tensile stress in Bi2Te3 thermoelectric fibers. Journal of Materiomics, 2020, 6, 467-475.	2.8	13

ZHONGMIN YANG

#	Article	IF	CITATIONS
37	Self-assembled ultrafine CsPbBr3 perovskite nanowires for polarized light detection. Science China Materials, 2021, 64, 2261-2271.	3.5	13
38	Tunable Light Polarization Information from Single Upconverting Fluoride Microcrystal. Advanced Optical Materials, 2021, 9, 2100044.	3.6	13
39	Enhanced Thermoelectric Properties of Bi ₂ Te ₃ â€Based Micro–Nano Fibers via Thermal Drawing and Interfacial Engineering. Advanced Materials, 2022, 34, .	11.1	13
40	Scalable In-Fiber Manufacture of Functional Composite Particles. ACS Nano, 2018, 12, 11130-11138.	7.3	12
41	Single crystal tellurium semiconductor core optical fibers. Optical Materials Express, 2020, 10, 1072.	1.6	12
42	Coordination Geometry Engineering in a Doped Disordered Matrix for Tunable Optical Response. Journal of Physical Chemistry C, 2019, 123, 29343-29352.	1.5	10
43	Optical Fiber Waveguiding Soft Photoactuators Exhibiting Giant Reversible Shape Change. Advanced Optical Materials, 2021, 9, 2101132.	3.6	10
44	Azimuthally and radially polarized orbital angular momentum modes in valley topological photonic crystal fiber. Nanophotonics, 2021, 10, 4067-4074.	2.9	10
45	Tunable luminescence in Pr ³⁺ single-doped oxyfluoride glass ceramic and fibers. Journal of Materials Chemistry C, 2022, 10, 5266-5275.	2.7	10
46	Broadband photonic topological insulator based on triangular-holes array with higher energy filling efficiency. Nanophotonics, 2020, 9, 2839-2846.	2.9	8
47	Design and fabrication of lutetium aluminum silicate glass and nanostructured glass for radiation detection. Journal of the American Ceramic Society, 2021, 104, 2030-2038.	1.9	6
48	Nanostructured Glass Composite for Selfâ€Calibrated Radiation Dose Rate Detection. Advanced Optical Materials, 0, , 2100751.	3.6	6
49	Multifunctional singleâ€crystal tellurium core multimaterial fiber via thermal drawing and laser recrystallization. Journal of the American Ceramic Society, 0, , .	1.9	6
50	Quantitative prediction of the structure and luminescence properties of Nd ³⁺ doped borate laser glasses. Journal of the American Ceramic Society, 2019, 102, 7288-7298.	1.9	5
51	Intense continuousâ€wave laser and modeâ€locked pulse operation from Yb ³⁺ â€doped oxyfluoride glass–ceramic fibers. Journal of the American Ceramic Society, 2022, 105, 5203-5212.	1.9	4
52	Solution-precipitation synthesis of perovskite polyhedron and its lasing applications. Journal of Materials Chemistry C, 2020, 8, 6667-6671.	2.7	3
53	Quantitative prediction of the glassâ€forming region and luminescence properties in Tm 3+ â€doped germanate laser glasses. Journal of the American Ceramic Society, 2020, 103, 4203-4213.	1.9	2
54	High-Precision Tunable Single-Frequency Fiber Laser at 1.5 μm Based on Self-Injection Locking. IEEE Photonics Technology Letters, 2022, 34, 633-636.	1.3	2

#	Article	IF	CITATIONS
55	A 102 W High-Power Linearly-Polarized All-Fiber Single-Frequency Laser at 1560 nm. Photonics, 2022, 9, 396.	0.9	2