List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7296101/publications.pdf Version: 2024-02-01

	435	394
84,856	131	279
citations	h-index	g-index
333	333	51413
docs citations	times ranked	citing authors
	84,856 citations 333 docs citations	 84,856 131 h-index 333 docs citations 333 times ranked

CADI H LINE

#	Article	IF	CITATIONS
1	Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. New England Journal of Medicine, 2014, 371, 1507-1517.	27.0	4,444
2	Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. New England Journal of Medicine, 2018, 378, 439-448.	27.0	3,680
3	Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia. New England Journal of Medicine, 2011, 365, 725-733.	27.0	3,067
4	Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. New England Journal of Medicine, 2013, 368, 1509-1518.	27.0	3,021
5	T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Science Translational Medicine, 2011, 3, 95ra73.	12.4	2,006
6	CAR T cell immunotherapy for human cancer. Science, 2018, 359, 1361-1365.	12.6	1,968
7	Cytokine Storm. New England Journal of Medicine, 2020, 383, 2255-2273.	27.0	1,911
8	Cytokine release syndrome in severe COVID-19. Science, 2020, 368, 473-474.	12.6	1,579
9	Delivery technologies for cancer immunotherapy. Nature Reviews Drug Discovery, 2019, 18, 175-196.	46.4	1,562
10	A human memory T cell subset with stem cell–like properties. Nature Medicine, 2011, 17, 1290-1297.	30.7	1,547
11	Chimeric Antigen Receptor Therapy. New England Journal of Medicine, 2018, 379, 64-73.	27.0	1,488
12	Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine, 2015, 7, 303ra139.	12.4	1,402
13	Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. New England Journal of Medicine, 2017, 377, 2545-2554.	27.0	1,390
14	Gene Editing of <i>CCR5</i> in Autologous CD4 T Cells of Persons Infected with HIV. New England Journal of Medicine, 2014, 370, 901-910.	27.0	1,227
15	The CD28 Signaling Pathway Regulates Glucose Metabolism. Immunity, 2002, 16, 769-777.	14.3	1,201
16	Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nature Medicine, 2018, 24, 563-571.	30.7	1,150
17	A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Science Translational Medicine, 2017, 9, .	12.4	1,116
18	SHP-1 and SHP-2 Associate with Immunoreceptor Tyrosine-Based Switch Motif of Programmed Death 1 upon Primary Human T Cell Stimulation, but Only Receptor Ligation Prevents T Cell Activation. Journal of Immunology, 2004, 173, 945-954.	0.8	989

#	Article	IF	CITATIONS
19	Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy In Vivo. Molecular Therapy, 2009, 17, 1453-1464.	8.2	988
20	Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood, 2013, 122, 863-871.	1.4	932
21	Infusion of ex vivo expanded T regulatory cells in adults transplanted with umbilical cord blood: safety profile and detection kinetics. Blood, 2011, 117, 1061-1070.	1.4	926
22	Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nature Biotechnology, 2008, 26, 808-816.	17.5	916
23	Engineered T cells: the promise and challenges of cancer immunotherapy. Nature Reviews Cancer, 2016, 16, 566-581.	28.4	876
24	CRISPR-engineered T cells in patients with refractory cancer. Science, 2020, 367, .	12.6	872
25	The Principles of Engineering Immune Cells to Treat Cancer. Cell, 2017, 168, 724-740.	28.9	844
26	Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discovery, 2016, 6, 664-679.	9.4	811
27	Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells. Immunity, 2016, 44, 380-390.	14.3	811
28	Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3360-3365.	7.1	758
29	NY-ESO-1–specific TCR–engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nature Medicine, 2015, 21, 914-921.	30.7	728
30	Mesothelin-Specific Chimeric Antigen Receptor mRNA-Engineered T Cells Induce Antitumor Activity in Solid Malignancies. Cancer Immunology Research, 2014, 2, 112-120.	3.4	711
31	Multiplex Genome Editing to Generate Universal CAR T Cells Resistant to PD1 Inhibition. Clinical Cancer Research, 2017, 23, 2255-2266.	7.0	694
32	Human chimeric antigen receptor macrophages for cancer immunotherapy. Nature Biotechnology, 2020, 38, 947-953.	17.5	692
33	Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature, 2018, 558, 307-312.	27.8	574
34	Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood, 2014, 123, 2625-2635.	1.4	558
35	Decade-Long Safety and Function of Retroviral-Modified Chimeric Antigen Receptor T Cells. Science Translational Medicine, 2012, 4, 132ra53.	12.4	555
36	Identification of a Titin-Derived HLA-A1–Presented Peptide as a Cross-Reactive Target for Engineered MAGE A3–Directed T Cells. Science Translational Medicine, 2013, 5, 197ra103.	12.4	539

#	Article	IF	CITATIONS
37	B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. Journal of Clinical Investigation, 2019, 129, 2210-2221.	8.2	513
38	Chimeric Antigen Receptor T Cells against CD19 for Multiple Myeloma. New England Journal of Medicine, 2015, 373, 1040-1047.	27.0	511
39	T Cells Expressing Chimeric Antigen Receptors Can Cause Anaphylaxis in Humans. Cancer Immunology Research, 2013, 1, 26-31.	3.4	489
40	Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. Journal of Clinical Investigation, 2016, 126, 3814-3826.	8.2	472
41	Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine, 2018, 24, 1499-1503.	30.7	459
42	Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity, 2016, 44, 1444-1454.	14.3	458
43	Gene transfer in humans using a conditionally replicating lentiviral vector. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17372-17377.	7.1	452
44	Adoptive T cell therapy for cancer in the clinic. Journal of Clinical Investigation, 2007, 117, 1466-1476.	8.2	451
45	Targeting Fibroblast Activation Protein in Tumor Stroma with Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth and Augment Host Immunity without Severe Toxicity. Cancer Immunology Research, 2014, 2, 154-166.	3.4	448
46	Expression of a Functional CCR2 Receptor Enhances Tumor Localization and Tumor Eradication by Retargeted Human T cells Expressing a Mesothelin-Specific Chimeric Antibody Receptor. Clinical Cancer Research, 2011, 17, 4719-4730.	7.0	441
47	CAR T cells produced in vivo to treat cardiac injury. Science, 2022, 375, 91-96.	12.6	441
48	Affinity-Tuned ErbB2 or EGFR Chimeric Antigen Receptor T Cells Exhibit an Increased Therapeutic Index against Tumors in Mice. Cancer Research, 2015, 75, 3596-3607.	0.9	426
49	Adoptive T Cell Transfer for Cancer Immunotherapy in the Era of Synthetic Biology. Immunity, 2013, 39, 49-60.	14.3	418
50	Enhancing CAR T cell persistence through ICOS and 4-1BB costimulation. JCI Insight, 2018, 3, .	5.0	412
51	A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors. Cancer Research, 2016, 76, 1578-1590.	0.9	411
52	Dominant-Negative TGF-Î ² Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation And Augments Prostate Cancer Eradication. Molecular Therapy, 2018, 26, 1855-1866.	8.2	406
53	Targeting cardiac fibrosis with engineered T cells. Nature, 2019, 573, 430-433.	27.8	404
54	Human T Regulatory Cell Therapy: Take a Billion or So and Call Me in the Morning. Immunity, 2009, 30, 656-665.	14.3	400

#	Article	IF	CITATIONS
55	Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor–modified T cells. Blood, 2014, 123, 2343-2354.	1.4	396
56	Ex vivo expansion of polyclonal and antigen-specific cytotoxic T lymphocytes by artificial APCs expressing ligands for the T-cell receptor, CD28 and 4-1BB. Nature Biotechnology, 2002, 20, 143-148.	17.5	395
57	PD-1 blockade modulates chimeric antigen receptor (CAR)–modified T cells: refueling the CAR. Blood, 2017, 129, 1039-1041.	1.4	393
58	Multiple Injections of Electroporated Autologous T Cells Expressing a Chimeric Antigen Receptor Mediate Regression of Human Disseminated Tumor. Cancer Research, 2010, 70, 9053-9061.	0.9	388
59	Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood, 2016, 127, 1117-1127.	1.4	381
60	Tumor-Promoting Desmoplasia Is Disrupted by Depleting FAP-Expressing Stromal Cells. Cancer Research, 2015, 75, 2800-2810.	0.9	375
61	Rational development and characterization of humanized anti–EGFR variant III chimeric antigen receptor T cells for glioblastoma. Science Translational Medicine, 2015, 7, 275ra22.	12.4	369
62	Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature, 2022, 602, 503-509.	27.8	369
63	Is autoimmunity the Achilles' heel of cancer immunotherapy?. Nature Medicine, 2017, 23, 540-547.	30.7	367
64	Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy for Acute Lymphoblastic Leukemia. Critical Care Medicine, 2017, 45, e124-e131.	0.9	357
65	Multifactorial T-cell Hypofunction That Is Reversible Can Limit the Efficacy of Chimeric Antigen Receptor–Transduced Human T cells in Solid Tumors. Clinical Cancer Research, 2014, 20, 4262-4273.	7.0	339
66	Activity of Mesothelin-Specific Chimeric Antigen Receptor T Cells Against Pancreatic Carcinoma Metastases in a Phase 1 Trial. Gastroenterology, 2018, 155, 29-32.	1.3	337
67	Umbilical cord blood–derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood, 2016, 127, 1044-1051.	1.4	333
68	Massive ex Vivo Expansion of Human Natural Regulatory T Cells (T _{regs}) with Minimal Loss of in Vivo Functional Activity. Science Translational Medicine, 2011, 3, 83ra41.	12.4	326
69	Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Science Translational Medicine, 2018, 10, .	12.4	326
70	Adoptive cellular therapy: A race to the finish line. Science Translational Medicine, 2015, 7, 280ps7.	12.4	320
71	Chimeric Antigen Receptor Therapy for Cancer. Annual Review of Medicine, 2014, 65, 333-347.	12.2	319
72	Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18. Cell Reports, 2017, 20, 3025-3033.	6.4	319

#	Article	IF	CITATIONS
73	A versatile system for rapid multiplex genome-edited CAR T cell generation. Oncotarget, 2017, 8, 17002-17011.	1.8	319
74	Prolonged survival and tissue trafficking following adoptive transfer of CD4ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus–infected subjects. Blood, 2000, 96, 785-793.	1.4	318
75	Safety and Efficacy of Intratumoral Injections of Chimeric Antigen Receptor (CAR) T Cells in Metastatic Breast Cancer. Cancer Immunology Research, 2017, 5, 1152-1161.	3.4	309
76	Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell, 2019, 178, 933-948.e14.	28.9	301
77	Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering. Nano Letters, 2020, 20, 1578-1589.	9.1	299
78	Ex vivo induction and expansion of antigen-specific cytotoxic T cells by HLA-Ig–coated artificial antigen-presenting cells. Nature Medicine, 2003, 9, 619-625.	30.7	291
79	Going viral: chimeric antigen receptor Tâ€cell therapy for hematological malignancies. Immunological Reviews, 2015, 263, 68-89.	6.0	290
80	Chimeric Antigen Receptor T Cells with Dissociated Signaling Domains Exhibit Focused Antitumor Activity with Reduced Potential for Toxicity <i>In Vivo</i> . Cancer Immunology Research, 2013, 1, 43-53.	3.4	284
81	Restoration of immunity in lymphopenic individuals with cancer by vaccination and adoptive T-cell transfer. Nature Medicine, 2005, 11, 1230-1237.	30.7	282
82	Ibrutinib treatment improves T cell number and function in CLL patients. Journal of Clinical Investigation, 2017, 127, 3052-3064.	8.2	280
83	Cord blood CD4+CD25+-derived T regulatory cell lines express FoxP3 protein and manifest potent suppressor function. Blood, 2005, 105, 750-758.	1.4	276
84	A Phase II Randomized Study of HIV-Specific T-Cell Gene Therapy in Subjects with Undetectable Plasma Viremia on Combination Antiretroviral Therapy. Molecular Therapy, 2002, 5, 788-797.	8.2	275
85	Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood, 2017, 130, 2317-2325.	1.4	273
86	Single-Cell Analyses Identify Brain Mural Cells Expressing CD19 as Potential Off-Tumor Targets for CAR-T Immunotherapies. Cell, 2020, 183, 126-142.e17.	28.9	269
87	ICOS-based chimeric antigen receptors program bipolar TH17/TH1 cells. Blood, 2014, 124, 1070-1080.	1.4	268
88	Emerging Cellular Therapies for Cancer. Annual Review of Immunology, 2019, 37, 145-171.	21.8	263
89	<i>In Vivo</i> Persistence, Tumor Localization, and Antitumor Activity of CAR-Engineered T Cells Is Enhanced by Costimulatory Signaling through CD137 (4-1BB). Cancer Research, 2011, 71, 4617-4627.	0.9	256
90	Identification of Chimeric Antigen Receptors That Mediate Constitutive or Inducible Proliferation of T Cells. Cancer Immunology Research, 2015, 3, 356-367.	3.4	247

#	Article	IF	CITATIONS
91	Adoptive Immunotherapy for Cancer or Viruses. Annual Review of Immunology, 2014, 32, 189-225.	21.8	240
92	Engineering Artificial Antigen-presenting Cells to Express a Diverse Array of Co-stimulatory Molecules. Molecular Therapy, 2007, 15, 981-988.	8.2	236
93	Driving gene-engineered T cell immunotherapy of cancer. Cell Research, 2017, 27, 38-58.	12.0	232
94	Making Better Chimeric Antigen Receptors for Adoptive T-cell Therapy. Clinical Cancer Research, 2016, 22, 1875-1884.	7.0	228
95	Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nature Medicine, 2008, 14, 1390-1395.	30.7	224
96	The Inducible Costimulator (ICOS) Is Critical for the Development of Human T _H 17 Cells. Science Translational Medicine, 2010, 2, 55ra78.	12.4	221
97	Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Molecular Therapy, 2019, 27, 1919-1929.	8.2	220
98	Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. , 2017, 5, 22.		217
99	Principles of adoptive T cell cancer therapy. Journal of Clinical Investigation, 2007, 117, 1204-1212.	8.2	217
100	Genetic therapies against HIV. Nature Biotechnology, 2007, 25, 1444-1454.	17.5	214
101	A phase 1 trial of donor lymphocyte infusions expanded and activated ex vivo via CD3/CD28 costimulation. Blood, 2006, 107, 1325-1331.	1.4	209
102	Differential Regulation of HIV-1 Fusion Cofactor Expression by CD28 Costimulation of CD4+ T Cells. Science, 1997, 276, 273-276.	12.6	206
103	Improving CART-Cell Therapy of Solid Tumors with Oncolytic Virus–Driven Production of a Bispecific T-cell Engager. Cancer Immunology Research, 2018, 6, 605-616.	3.4	199
104	CAR T-cell therapy for glioblastoma: recent clinical advances and future challenges. Neuro-Oncology, 2018, 20, 1429-1438.	1.2	197
105	Treatment of Advanced Leukemia in Mice with mRNA Engineered T Cells. Human Gene Therapy, 2011, 22, 1575-1586.	2.7	191
106	Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight, 2018, 3, .	5.0	191
107	Nanomaterials for T-cell cancer immunotherapy. Nature Nanotechnology, 2021, 16, 25-36.	31.5	191
108	4-1BB Is Superior to CD28 Costimulation for Generating CD8+ Cytotoxic Lymphocytes for Adoptive Immunotherapy. Journal of Immunology, 2007, 179, 4910-4918.	0.8	190

#	Article	IF	CITATIONS
109	Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood, 2016, 128, 360-370.	1.4	190
110	Reducing <i>Ex Vivo</i> Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunology Research, 2018, 6, 1100-1109.	3.4	189
111	Tales of tails: regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunological Reviews, 1997, 160, 43-54.	6.0	187
112	Prolonged survival and tissue trafficking following adoptive transfer of CD4ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus–infected subjects. Blood, 2000, 96, 785-793.	1.4	186
113	Engineering lymphocyte subsets: tools, trials and tribulations. Nature Reviews Immunology, 2009, 9, 704-716.	22.7	185
114	Impaired Death Receptor Signaling in Leukemia Causes Antigen-Independent Resistance by Inducing CAR T-cell Dysfunction. Cancer Discovery, 2020, 10, 552-567.	9.4	184
115	Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. , 2018, 6, 137.		182
116	Adoptive transfer of costimulated T cells induces lymphocytosis in patients with relapsed/refractory non-Hodgkin lymphoma following CD34+-selected hematopoietic cell transplantation. Blood, 2003, 102, 2004-2013.	1.4	181
117	PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nature Medicine, 2022, 28, 724-734.	30.7	171
118	Clinical Pharmacology of Tisagenlecleucel in B-cell Acute Lymphoblastic Leukemia. Clinical Cancer Research, 2018, 24, 6175-6184.	7.0	170
119	Expanding the Therapeutic Window for CAR T Cell Therapy in Solid Tumors: The Knowns and Unknowns of CAR T Cell Biology. Frontiers in Immunology, 2018, 9, 2486.	4.8	169
120	Cutting Edge: Foxp3-Mediated Induction of Pim 2 Allows Human T Regulatory Cells to Preferentially Expand in Rapamycin. Journal of Immunology, 2008, 180, 5794-5798.	0.8	167
121	Optimizing Chimeric Antigen Receptor T-Cell Therapy for Adults With Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2020, 38, 415-422.	1.6	162
122	Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nature Medicine, 2002, 8, 47-53.	30.7	161
123	An NK-like CAR TÂcell transition in CAR TÂcell dysfunction. Cell, 2021, 184, 6081-6100.e26.	28.9	160
124	The Addition of the BTK Inhibitor Ibrutinib to Anti-CD19 Chimeric Antigen Receptor T Cells (CART19) Improves Responses against Mantle Cell Lymphoma. Clinical Cancer Research, 2016, 22, 2684-2696.	7.0	157
125	CD28 Costimulation Is Essential for Human T Regulatory Expansion and Function. Journal of Immunology, 2008, 181, 2855-2868.	0.8	152
126	Measuring IL-6 and sIL-6R in serum from patients treated with tocilizumab and/or siltuximab following CAR T cell therapy. Journal of Immunological Methods, 2016, 434, 1-8.	1.4	150

#	Article	IF	CITATIONS
127	Overcoming the Immunosuppressive Tumor Microenvironment of Hodgkin Lymphoma Using Chimeric Antigen Receptor T Cells. Cancer Discovery, 2017, 7, 1154-1167.	9.4	149
128	Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood, 2011, 117, 788-797.	1.4	148
129	Optimized depletion of chimeric antigen receptor T cells in murine xenograft models of human acute myeloid leukemia. Blood, 2017, 129, 2395-2407.	1.4	148
130	Chimeric Antigen Receptor– and TCR-Modified T Cells Enter Main Street and Wall Street. Journal of Immunology, 2015, 195, 755-761.	0.8	147
131	CD28 and Inducible Costimulatory Protein Src Homology 2 Binding Domains Show Distinct Regulation of Phosphatidylinositol 3-Kinase, Bcl-xL, and IL-2 Expression in Primary Human CD4 T Lymphocytes. Journal of Immunology, 2003, 171, 166-174.	0.8	146
132	CAR T-cell therapy is effective for CD19-dim B-lymphoblastic leukemia but is impacted by prior blinatumomab therapy. Blood Advances, 2019, 3, 3539-3549.	5.2	145
133	Anti-CD19 CAR T cells with high-dose melphalan and autologous stem cell transplantation for refractory multiple myeloma. JCI Insight, 2018, 3, .	5.0	140
134	Analysis of Lentiviral Vector Integration in HIV+ Study Subjects Receiving Autologous Infusions of Gene Modified CD4+ T Cells. Molecular Therapy, 2009, 17, 844-850.	8.2	136
135	Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood, 2014, 123, 61-69.	1.4	135
136	T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma. Blood Advances, 2019, 3, 2812-2815.	5.2	133
137	Sleeping Beauty Transposonâ€mediated Engineering of Human Primary T Cells for Therapy of CD19+ Lymphoid Malignancies. Molecular Therapy, 2008, 16, 580-589.	8.2	130
138	Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases. PLoS Pathogens, 2011, 7, e1002020.	4.7	130
139	Oncolytic Adenoviral Delivery of an EGFR-Targeting T-cell Engager Improves Antitumor Efficacy. Cancer Research, 2017, 77, 2052-2063.	0.9	128
140	T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunology Research, 2013, 1, 26-31.	3.4	125
141	Checkpoint Blockade Reverses Anergy in IL-13Rα2 Humanized scFv-Based CAR T Cells to Treat Murine and Canine Gliomas. Molecular Therapy - Oncolytics, 2018, 11, 20-38.	4.4	123
142	Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood, 2020, 135, 713-723.	1.4	123
143	The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations. Scientific Reports, 2018, 8, 6289.	3.3	119
144	Chronic lymphocytic leukemia cells impair mitochondrial fitness in CD8+ T cells and impede CAR T-cell efficacy. Blood, 2019, 134, 44-58.	1.4	118

#	Article	IF	CITATIONS
145	Gut microbiome correlates of response and toxicity following anti-CD19 CAR T cell therapy. Nature Medicine, 2022, 28, 713-723.	30.7	117
146	Combination Immunotherapy after ASCT for Multiple Myeloma Using MAGE-A3/Poly-ICLC Immunizations Followed by Adoptive Transfer of Vaccine-Primed and Costimulated Autologous T Cells. Clinical Cancer Research, 2014, 20, 1355-1365.	7.0	116
147	4-1BB costimulation promotes CAR T cell survival through noncanonical NF-κB signaling. Science Signaling, 2020, 13, .	3.6	115
148	Immunotherapy for Brain Tumors. Journal of Clinical Oncology, 2017, 35, 2450-2456.	1.6	112
149	Gut microbiota modulates adoptive cell therapy via CD8 \hat{I} ± dendritic cells and IL-12. JCI Insight, 2018, 3, .	5.0	111
150	Efficient Clinical Scale Gene Modification via Zinc Finger Nuclease–Targeted Disruption of the HIV Co-receptor CCR5. Human Gene Therapy, 2013, 24, 245-258.	2.7	110
151	Single residue in CD28-costimulated CAR-T cells limits long-term persistence and antitumor durability. Journal of Clinical Investigation, 2020, 130, 3087-3097.	8.2	110
152	Large-Scale Production of CD4+ T Cells from HIV-1-Infected Donors After CD3/CD28 Costimulation*. Stem Cells and Development, 1998, 7, 437-448.	1.0	107
153	Engineered cellular immunotherapies in cancer and beyond. Nature Medicine, 2022, 28, 678-689.	30.7	106
154	Enhanced Effector Responses in Activated CD8+ T Cells Deficient in Diacylglycerol Kinases. Cancer Research, 2013, 73, 3566-3577.	0.9	105
155	Engineered T cells for cancer therapy. Cancer Immunology, Immunotherapy, 2014, 63, 969-975.	4.2	105
156	CAR T-Cell Therapies in Glioblastoma: A First Look. Clinical Cancer Research, 2018, 24, 535-540.	7.0	103
157	Long-Term Outcomes From a Randomized Dose Optimization Study of Chimeric Antigen Receptor Modified T Cells in Relapsed Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2020, 38, 2862-2871.	1.6	102
158	Cytokine release syndrome associated with chimeric-antigen receptor T-cell therapy: clinicopathological insights. Blood, 2017, 130, 2569-2572.	1.4	98
159	Regimen-Specific Effects of RNA-Modified Chimeric Antigen Receptor T Cells in Mice with Advanced Leukemia. Human Gene Therapy, 2013, 24, 717-727.	2.7	97
160	CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neoplastic T-cells. Leukemia, 2018, 32, 2307-2315.	7.2	96
161	Stable gene transfer and expression in human primary T cells by the Sleeping Beauty transposon system. Blood, 2006, 107, 483-491.	1.4	95
162	Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults With Relapsed or Refractory Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2021, 39, 3044-3055.	1.6	94

#	Article	IF	CITATIONS
163	Cancer immunotherapy comes of age and looks for maturity. Nature Communications, 2020, 11, 3325.	12.8	93
164	Rapid Immune Recovery and Graft-versus-Host Disease–like Engraftment Syndrome following Adoptive Transfer of Costimulated Autologous T Cells. Clinical Cancer Research, 2009, 15, 4499-4507.	7.0	91
165	Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. Cytotherapy, 2014, 16, 619-630.	0.7	90
166	Retroviral and Lentiviral Safety Analysis of Gene-Modified T Cell Products and Infused HIV and Oncology Patients. Molecular Therapy, 2018, 26, 269-279.	8.2	90
167	Clinical application of expanded CD4+25+ cells. Seminars in Immunology, 2006, 18, 78-88.	5.6	89
168	Bi-specific TCR-anti CD3 redirected T-cell targeting of NY-ESO-1- and LAGE-1-positive tumors. Cancer Immunology, Immunotherapy, 2013, 62, 773-785.	4.2	88
169	Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nature Medicine, 2021, 27, 842-850.	30.7	88
170	The immunostimulatory RNA RN7SL1 enables CAR-T cells to enhance autonomous and endogenous immune function. Cell, 2021, 184, 4981-4995.e14.	28.9	86
171	Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. , 2013, 1, 21.		85
172	A Cell-Based Artificial Antigen-Presenting Cell Coated with Anti-CD3 and CD28 Antibodies Enables Rapid Expansion and Long-Term Growth of CD4 T Lymphocytes. Clinical Immunology, 2002, 105, 259-272.	3.2	84
173	Antiviral effects of autologous CD4 T cells genetically modified with a conditionally replicating lentiviral vector expressing long antisense to HIV. Blood, 2013, 121, 1524-1533.	1.4	83
174	Tisagenlecleucel Modelâ€Based Cellular Kinetic Analysis of Chimeric Antigen Receptor–T Cells. CPT: Pharmacometrics and Systems Pharmacology, 2019, 8, 285-295.	2.5	83
175	CD19-targeting CAR T cell immunotherapy outcomes correlate with genomic modification by vector integration. Journal of Clinical Investigation, 2019, 130, 673-685.	8.2	78
176	Immunotherapy for Glioblastoma: Adoptive T-cell Strategies. Clinical Cancer Research, 2019, 25, 2042-2048.	7.0	77
177	Transforming Growth Factor-Î ² Receptor Blockade Augments the Effectiveness of Adoptive T-Cell Therapy of Established Solid Cancers. Clinical Cancer Research, 2008, 14, 3966-3974.	7.0	76
178	Absence of Replication-Competent Lentivirus in the Clinic: Analysis of Infused T Cell Products. Molecular Therapy, 2018, 26, 280-288.	8.2	76
179	Glycan-directed CAR-T cells. Glycobiology, 2018, 28, 656-669.	2.5	74
180	Prospective Clinical Trial of Anti-CD19 CAR T Cells in Combination with Ibrutinib for the Treatment of Chronic Lymphocytic Leukemia Shows a High Response Rate. Blood, 2018, 132, 298-298.	1.4	73

#	Article	IF	CITATIONS
181	Sequential Anti-CD19 Directed Chimeric Antigen Receptor Modified T-Cell Therapy (CART19) and PD-1 Blockade with Pembrolizumab in Patients with Relapsed or Refractory B-Cell Non-Hodgkin Lymphomas. Blood, 2018, 132, 4198-4198.	1.4	71
182	IL-21 promotes the expansion of CD27+CD28+ tumor infiltrating lymphocytes with high cytotoxic potential and low collateral expansion of regulatory T cells. Journal of Translational Medicine, 2013, 11, 37.	4.4	70
183	Immunodynamics: a cancer immunotherapy trials network review of immune monitoring in immuno-oncology clinical trials. , 2016, 4, 15.		67
184	Human CD26high T cells elicit tumor immunity against multiple malignancies via enhanced migration and persistence. Nature Communications, 2017, 8, 1961.	12.8	67
185	Driving cars to the clinic for solid tumors. Gene Therapy, 2018, 25, 165-175.	4.5	67
186	Considerations for the Clinical Application of Chimeric Antigen Receptor T Cells: Observations from a <i>Recombinant DNA Advisory Committee Symposium</i> Held June 15, 2010. Cancer Research, 2011, 71, 3175-3181.	0.9	63
187	Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Science Advances, 2022, 8, .	10.3	63
188	Nature of Tumor Control by Permanently and Transiently Modified GD2 Chimeric Antigen Receptor T Cells in Xenograft Models of Neuroblastoma. Cancer Immunology Research, 2014, 2, 1059-1070.	3.4	62
189	Chimeric Antigen Receptor T cells for B Cell Neoplasms: Choose the Right CAR for You. Current Hematologic Malignancy Reports, 2016, 11, 368-384.	2.3	60
190	Genome-Editing Technologies in Adoptive T Cell Immunotherapy for Cancer. Current Hematologic Malignancy Reports, 2017, 12, 522-529.	2.3	60
191	Genetic engineering of T cells for adoptive immunotherapy. Immunologic Research, 2008, 42, 166-181.	2.9	59
192	Nonviral RNA chimeric antigen receptor–modified T cells in patients with Hodgkin lymphoma. Blood, 2018, 132, 1022-1026.	1.4	58
193	Efficacy and Safety of CTL019 in the First US Phase II Multicenter Trial in Pediatric Relapsed/Refractory Acute Lymphoblastic Leukemia: Results of an Interim Analysis. Blood, 2016, 128, 2801-2801.	1.4	58
194	CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: a post-hoc analysis of pooled data from five clinical trials. Lancet Haematology,the, 2021, 8, e711-e722.	4.6	57
195	Orthogonal Design of Experiments for Optimization of Lipid Nanoparticles for mRNA Engineering of CAR T Cells. Nano Letters, 2022, 22, 533-542.	9.1	57
196	A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight, 2020, 5, .	5.0	56
197	B-Cell Maturation Antigen (BCMA)-Specific Chimeric Antigen Receptor T Cells (CART-BCMA) for Multiple Myeloma (MM): Initial Safety and Efficacy from a Phase I Study. Blood, 2016, 128, 1147-1147.	1.4	56
198	T-cell therapy at the threshold. Nature Biotechnology, 2012, 30, 611-614.	17.5	55

#	Article	IF	CITATIONS
199	Novel Cell and Gene Therapies for HIV. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007179-a007179.	6.2	54
200	Next-Generation CAR T-cell Therapies. Cancer Discovery, 2022, 12, 1625-1633.	9.4	53
201	Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. Journal of Translational Medicine, 2011, 9, 131.	4.4	52
202	The Ovarian Cancer Chemokine Landscape Is Conducive to Homing of Vaccine-Primed and CD3/CD28–Costimulated T Cells Prepared for Adoptive Therapy. Clinical Cancer Research, 2015, 21, 2840-2850.	7.0	52
203	CCR5-edited CD4+ T cells augment HIV-specific immunity to enable post-rebound control of HIV replication. Journal of Clinical Investigation, 2021, 131, .	8.2	52
204	Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling. Blood, 2011, 118, e112-e117.	1.4	49
205	Distinct Effects of IL-18 on the Engraftment and Function of Human Effector CD8+ T Cells and Regulatory T Cells. PLoS ONE, 2008, 3, e3289.	2.5	48
206	Adoptive immunotherapy: good habits instilled at youth have long-term benefits. Immunologic Research, 2008, 42, 182-196.	2.9	47
207	Human epigenetic and transcriptional TÂcell differentiation atlas for identifying functional TÂcell-specific enhancers. Immunity, 2022, 55, 557-574.e7.	14.3	47
208	Extensive Replicative Capacity of Human Central Memory T Cells. Journal of Immunology, 2004, 172, 6675-6683.	0.8	46
209	Early positron emission tomography/computed tomography as a predictor of response after CTL019 chimeric antigen receptor –T-cell therapy in B-cell non-Hodgkin lymphomas. Cytotherapy, 2018, 20, 1415-1418.	0.7	45
210	iGUIDE: an improved pipeline for analyzing CRISPR cleavage specificity. Genome Biology, 2019, 20, 14.	8.8	45
211	BET bromodomain protein inhibition reverses chimeric antigen receptor extinction and reinvigorates exhausted T cells in chronic lymphocytic leukemia. Journal of Clinical Investigation, 2021, 131, .	8.2	45
212	Engineering T cells for cancer: our synthetic future. Immunological Reviews, 2014, 257, 7-13.	6.0	43
213	Potent and Broad Inhibition of HIV-1 by a Peptide from the gp41 Heptad Repeat-2 Domain Conjugated to the CXCR4 Amino Terminus. PLoS Pathogens, 2016, 12, e1005983.	4.7	43
214	Anti-CD19 CAR T cells in combination with ibrutinib for the treatment of chronic lymphocytic leukemia. Blood Advances, 2022, 6, 5774-5785.	5.2	43
215	Changing the Mindset in Life Sciences Toward Translation: A Consensus. Science Translational Medicine, 2014, 6, 264cm12.	12.4	42
216	Transfer of influenza vaccine–primed costimulated autologous T cells after stem cell transplantation for multiple myeloma leads to reconstitution of influenza immunity: results of a randomized clinical trial. Blood, 2011, 117, 63-71.	1.4	41

#	Article	IF	CITATIONS
217	Optimization of cGMP purification and expansion of umbilical cord blood–derived T-regulatory cells in support of first-in-human clinical trials. Cytotherapy, 2017, 19, 250-262.	0.7	41
218	Potentiating adoptive cell therapy using synthetic IL-9 receptors. Nature, 2022, 607, 360-365.	27.8	41
219	Costimulation Light: Activation of CD4+ T Cells with CD80 or CD86 Rather Than Anti-CD28 Leads to a Th2 Cytokine Profile. Journal of Immunology, 2000, 165, 6908-6914.	0.8	40
220	Efficient Trafficking of Chimeric Antigen Receptor (CAR)-Modified T Cells to CSF and Induction of Durable CNS Remissions in Children with CNS/Combined Relapsed/Refractory ALL. Blood, 2015, 126, 3769-3769.	1.4	40
221	Adoptive Transfer of Autologous T Cells Improves T-cell Repertoire Diversity and Long-term B-cell Function in Pediatric Patients with Neuroblastoma. Clinical Cancer Research, 2012, 18, 6732-6741.	7.0	39
222	Enhancing Chimeric Antigen Receptor T Cell Anti-tumor Function through Advanced Media Design. Molecular Therapy - Methods and Clinical Development, 2020, 18, 595-606.	4.1	39
223	Perspective: Assembly line immunotherapy. Nature, 2013, 498, S17-S17.	27.8	38
224	Randomized, Phase II Dose Optimization Study of Chimeric Antigen Receptor Modified T Cells Directed Against CD19 (CTL019) in Patients with Relapsed, Refractory CLL. Blood, 2014, 124, 1982-1982.	1.4	38
225	T cells targeting NY-ESO-1 demonstrate efficacy against disseminated neuroblastoma. Oncolmmunology, 2016, 5, e1040216.	4.6	37
226	A Cure for HIV Infection: "Not in My Lifetime―or "Just Around the Corner�. Pathogens and Immunity, 2016, 1, 154.	3.1	35
227	Chimeric Antigen Receptor–Modified T Cells: Clinical Translation in Stem Cell Transplantation and Beyond. Biology of Blood and Marrow Transplantation, 2013, 19, S2-S5.	2.0	34
228	Case Report: Prolonged Survival Following EGFRvIII CAR T Cell Treatment for Recurrent Glioblastoma. Frontiers in Oncology, 2021, 11, 669071.	2.8	34
229	Safety and antitumor activity of chimeric antigen receptor modified T cells in patients with chemotherapy refractory metastatic pancreatic cancer Journal of Clinical Oncology, 2015, 33, 3007-3007.	1.6	33
230	Dual Targeting of Mesothelin and CD19 with Chimeric Antigen Receptor-Modified T Cells in Patients with Metastatic Pancreatic Cancer. Molecular Therapy, 2020, 28, 2367-2378.	8.2	32
231	Immunotherapy for Breast Cancer: Current and Future Strategies. Current Surgery Reports, 2017, 5, 1.	0.9	31
232	Single-cell multiomics dissection of basal and antigen-specific activation states of CD19-targeted CAR T cells. , 2021, 9, e002328.		31
233	Posterior Reversible Encephalopathy Syndrome (PRES) after Infusion of Anti-Bcma CAR T Cells (CART-BCMA) for Multiple Myeloma: Successful Treatment with Cyclophosphamide. Blood, 2016, 128, 5702-5702.	1.4	31
234	Ruxolitinib Prevents Cytokine Release Syndrome after CART Cell Therapy without Impairing the Anti-Tumor Effect in a Xenograft Model. Blood, 2016, 128, 652-652.	1.4	31

#	Article	IF	CITATIONS
235	Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Advances, 2020, 4, 5174-5183.	5.2	30
236	Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues. Nature Cancer, 2022, 3, 581-594.	13.2	30
237	Measurement of Intracellular Ions by Flow Cytometry. Current Protocols in Immunology, 2004, 64, Unit 5.5.	3.6	28
238	Chimeric Antigen Receptor T Cell Therapies: A Review of Cellular Kineticâ€Pharmacodynamic Modeling Approaches. Journal of Clinical Pharmacology, 2020, 60, S147-S159.	2.0	28
239	Harnessing CAR T-cell Insights to Develop Treatments for Hyperinflammatory Responses in Patients with COVID-19. Cancer Discovery, 2020, 10, 775-778.	9.4	28
240	Pilot Study of Anti-CD19 Chimeric Antigen Receptor T Cells (CTL019) in Conjunction with Salvage Autologous Stem Cell Transplantation for Advanced Multiple Myeloma. Blood, 2016, 128, 974-974.	1.4	28
241	A phase I clinical trial of PSMA-directed/TGFβ-insensitive CAR-T cells in metastatic castration-resistant prostate cancer Journal of Clinical Oncology, 2019, 37, TPS347-TPS347.	1.6	28
242	A Translational Bridge to Cancer Immunotherapy: Exploiting Costimulation and Target Antigens for Active and Passive T Cell Immunotherapy. Immunologic Research, 2003, 27, 341-356.	2.9	27
243	Umbilical Cord Blood Xenografts in Immunodeficient Mice Reveal That T Cells Enhance Hematopoietic Engraftment Beyond Overcoming Immune Barriers by Stimulating Stem Cell Differentiation. Biology of Blood and Marrow Transplantation, 2007, 13, 1135-1144.	2.0	27
244	Distinguishing Truncated and Normal MUC1 Glycoform Targeting from Tn-MUC1-Specific CAR T Cells: Specificity Is the Key to Safety. Immunity, 2016, 45, 947-948.	14.3	27
245	Trispecific antibodies offer a third way forward for anticancer immunotherapy. Nature, 2019, 575, 450-451.	27.8	27
246	Multiparametric magnetic resonance imaging in the assessment of anti-EGFRvIII chimeric antigen receptor T cell therapy in patients with recurrent glioblastoma. British Journal of Cancer, 2019, 120, 54-56.	6.4	27
247	Pilot Study of Prophylactic ExÂVivo Costimulated Donor Leukocyte Infusion After Reduced-Intensity Conditioned Allogeneic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2013, 19, 1094-1101.	2.0	26
248	Novel Redirected T–Cell Immunotherapies for Advanced Prostate Cancer. Clinical Cancer Research, 2022, 28, 576-584.	7.0	26
249	A cellular antidote to specifically deplete anti-CD19 chimeric antigen receptor–positive cells. Blood, 2020, 135, 505-509.	1.4	25
250	Phosphatidylinositol 3-Kinase p110δIsoform Regulates CD8+ T Cell Responses during Acute Viral and Intracellular Bacterial Infections. Journal of Immunology, 2016, 196, 1186-1198.	0.8	24
251	Human Genome Editing in the Clinic: New Challenges in Regulatory Benefit-Risk Assessment. Cell Stem Cell, 2017, 21, 427-430.	11.1	24
252	Pooled safety analysis of tisagenlecleucel in children and young adults with B cell acute lymphoblastic leukemia. , 2021, 9, e002287.		24

#	Article	IF	CITATIONS
253	T cell engineering as therapy for cancer and HIV: our synthetic future. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140374.	4.0	23
254	The role of co-stimulation in regulation of chemokine receptor expression and HIV-1 infection in primary T lymphocytes. Seminars in Immunology, 1998, 10, 195-202.	5.6	22
255	Adoptive Cellular Therapy. Current Topics in Microbiology and Immunology, 2010, 344, 149-172.	1.1	22
256	Efficacy and Safety of Humanized Chimeric Antigen Receptor (CAR)-Modified T Cells Targeting CD19 in Children with Relapsed/Refractory ALL. Blood, 2015, 126, 683-683.	1.4	22
257	Multiple cancer-specific antigens are targeted by a chimeric antibody receptor on a single cancer cell. JCI Insight, 2019, 4, .	5.0	21
258	Drugging the Undruggable Ras — Immunotherapy to the Rescue?. New England Journal of Medicine, 2016, 375, 2286-2289.	27.0	19
259	Transdifferentiation of lymphoma into sarcoma associated with profound reprogramming of the epigenome. Blood, 2020, 136, 1980-1983.	1.4	19
260	Clinical Predictors of T Cell Fitness for CAR T Cell Manufacturing and Efficacy in Multiple Myeloma. Blood, 2018, 132, 1886-1886.	1.4	19
261	SAP: natural inhibitor or grand SLAM of T cell activation?. Nature Immunology, 2001, 2, 665-666.	14.5	18
262	Enhanced Function of Redirected Human T Cells Expressing Linker for Activation of T Cells That Is Resistant to Ubiquitylation. Human Gene Therapy, 2013, 24, 27-37.	2.7	18
263	Biomarkers of Response to Anti-CD19 Chimeric Antigen Receptor (CAR) T-Cell Therapy in Patients with Chronic Lymphocytic Leukemia. Blood, 2016, 128, 57-57.	1.4	18
264	CARTs on the Road for Myeloma. Clinical Cancer Research, 2014, 20, 3899-3901.	7.0	17
265	Evaluating the skin in patients undergoing chimeric antigen receptor modified T-cell therapy. Journal of the American Academy of Dermatology, 2016, 75, 1054-1057.	1.2	17
266	T Cells Engineered With a Chimeric Antigen Receptor (CAR) Targeting CD19 (CTL019) Produce Significant In Vivo Proliferation, Complete Responses and Long-Term Persistence Without Gvhd In Children and Adults With Relapsed, Refractory ALL. Blood, 2013, 122, 67-67.	1.4	17
267	Comprehensive Serum Proteome Profiling of Cytokine Release Syndrome and Immune Effector Cell–Associated Neurotoxicity Syndrome Patients with B-Cell ALL Receiving CAR T19. Clinical Cancer Research, 2022, 28, 3804-3813.	7.0	17
268	Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation. Protein and Cell, 2017, 8, 514-526.	11.0	16
269	Cars in Leukemia: Relapse with Antigen-Negative Leukemia Originating from a Single B Cell Expressing the Leukemia-Targeting CAR. Blood, 2016, 128, 281-281.	1.4	16
270	The Safety of Bridging Radiation with Anti-BCMA CAR T-Cell Therapy for Multiple Myeloma. Clinical Cancer Research, 2021, 27, 6580-6590.	7.0	15

#	Article	IF	CITATIONS
271	Predicting Dangerous Rides in CAR T Cells: Bridging the Gap between Mice and Humans. Molecular Therapy, 2018, 26, 1401-1403.	8.2	14
272	Chimeric Antigen Receptor Modified T Cells Directed Against CD19 (CTL019 cells) Have Long-Term Persistence and Induce Durable Responses In Relapsed, Refractory CLL. Blood, 2013, 122, 4162-4162.	1.4	14
273	T Cells Engineered with a Chimeric Antigen Receptor (CAR) Targeting CD19 (CTL019) Have Long Term Persistence and Induce Durable Remissions in Children with Relapsed, Refractory ALL. Blood, 2014, 124, 380-380.	1.4	14
274	Costimulation of γÎTCR and TLR7/8 promotes VÎ′2 T-cell antitumor activity by modulating mTOR pathway and APC function. , 2021, 9, e003339.		14
275	Combination Anti-Bcma and Anti-CD19 CAR T Cells As Consolidation of Response to Prior Therapy in Multiple Myeloma. Blood, 2019, 134, 1863-1863.	1.4	13
276	Randomized, Phase II Dose Optimization Study Of Chimeric Antigen Receptor Modified T Cells Directed Against CD19 (CTL019) In Patients With Relapsed, Refractory CLL. Blood, 2013, 122, 873-873.	1.4	13
277	Multiplex Cripsr/Cas9 Genome Editing to Generate Potent Universal CART and PD1-Deficient Cells Against Leukemia. Blood, 2015, 126, 4280-4280.	1.4	12
278	Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy. Current Opinion in Immunology, 2022, 74, 76-84.	5.5	12
279	Blocking HIV's Attack. Scientific American, 2012, 306, 54-59.	1.0	11
280	IMCT-15PILOT STUDY OF T CELLS REDIRECTED TO EGFRVIII WITH A CHIMERIC ANTIGEN RECEPTOR IN PATIENTS WITH EGFRVIII+ GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v110.4-v111.	1.2	10
281	Boosting engineered T cells. Science, 2019, 365, 119-120.	12.6	10
282	First-in-Human Assessment of Feasibility and Safety of Multiplexed Genetic Engineering of Autologous T Cells Expressing NY-ESO -1 TCR and CRISPR/Cas9 Gene Edited to Eliminate Endogenous TCR and PD-1 (NYCE T cells) in Advanced Multiple Myeloma (MM) and Sarcoma. Blood, 2019, 134, 49-49.	1.4	10
283	Production of Human CRISPR-Engineered CAR-T Cells. Journal of Visualized Experiments, 2021, , .	0.3	9
284	A randomized phase 2 trial of idiotype vaccination and adoptive autologous T-cell transfer in patients with multiple myeloma. Blood, 2022, 139, 1289-1301.	1.4	9
285	Outcomes in Aggressive B-Cell Non-Hodgkin Lymphomas with Anti-CD19 CAR T-Cell (CTL019) Products Not Meeting Commercial Release Specifications. Blood, 2019, 134, 594-594.	1.4	9
286	Leukemia Stem Cells Are Characterized By CLEC12A Expression and Chemotherapy Refractoriness That Can be Overcome By Targeting with Chimeric Antigen Receptor T Cells. Blood, 2016, 128, 766-766.	1.4	9
287	Toward Synthetic Biology with Engineered T Cells: A Long Journey Just Begun. Human Gene Therapy, 2014, 25, 779-784.	2.7	8
288	Generating and Expanding Autologous Chimeric Antigen Receptor T Cells from Patients with Acute Myeloid Leukemia. Methods in Molecular Biology, 2017, 1633, 267-276.	0.9	8

#	Article	IF	CITATIONS
289	Emerging Use of CRISPR Technology — Chasing the Elusive HIV Cure. New England Journal of Medicine, 2019, 381, 1281-1283.	27.0	8
290	Engineered T Cell Therapies from a Drug Development Viewpoint. Engineering, 2019, 5, 140-149.	6.7	8
291	A phase I trial of cyclosporine for hospitalized patients with COVID-19. JCI Insight, 2022, 7, .	5.0	8
292	Measurement of Intracellular lons by Flow Cytometry. Current Protocols in Cytometry, 2015, 72, 9.8.1-9.8.21.	3.7	7
293	Infusion of CD3/CD28 costimulated umbilical cord blood T cells at the time of single umbilical cord blood transplantation may enhance engraftment. American Journal of Hematology, 2016, 91, 453-460.	4.1	7
294	Remote Controlled CARs: Towards a Safer Therapy for Leukemia. Cancer Immunology Research, 2016, 4, 643-643.	3.4	7
295	CAR T-Cells Depend on the Coupling of NADH Oxidation with ATP Production. Cells, 2021, 10, 2334.	4.1	7
296	Programming the Next Generation of Dendritic Cells. Molecular Therapy, 2007, 15, 846-848.	8.2	6
297	CAR T cells targeting CD13 controllably induce eradication of acute myeloid leukemia with a single domain antibody switch. Leukemia, 2021, 35, 3309-3313.	7.2	6
298	Bâ€cell maturation antigen chimeric antigen receptor Tâ€cell reâ€expansion in a patient with myeloma following salvage programmed cell death protein 1 inhibitorâ€based combination therapy. British Journal of Haematology, 2021, 193, 851-855.	2.5	6
299	Ovarian cancer chemokines may not be a significant barrier during whole tumor antigen dendritic-cell vaccine and adoptive T-cell immunotherapy. Oncolmmunology, 2016, 5, e1062210.	4.6	4
300	Response to Anti-Bcma CAR T Cell Therapy Correlates with T Cell Exhaustion and Activation Status in T Cells at Baseline in Myeloma. Blood, 2019, 134, 1909-1909.	1.4	4
301	Hypogammaglobulinemia and Infection Risk in Chronic Lymphocytic Leukemia (CLL) Patients Treated with CD19-Directed Chimeric Antigen Receptor T (CAR-T) Cells. Blood, 2020, 136, 30-32.	1.4	4
302	Cellular Kinetics of Chimeric Antigen Receptor T Cells (CTL019) in Patients with Relapsed/Refractory CD19+ Leukemia. Blood, 2016, 128, 220-220.	1.4	4
303	Clinical Efficacy of Anti-CD22 Chimeric Antigen Receptor T Cells for B-Cell Acute Lymphoblastic Leukemia Is Correlated with the Length of the Scfv Linker and Can be Predicted Using Xenograft Models. Blood, 2017, 130, 807-807.	1.4	4
304	Autologous CD4ÂT Lymphocytes Modified with a Tat-Dependent, Virus-Specific Endoribonuclease Gene in HIV-Infected Individuals. Molecular Therapy, 2021, 29, 626-635.	8.2	3
305	T-Rapa Cell Clinical Products Contain a Balance of Minimally Differentiated Th2/Th1 Effector Cells Depleted of Treg Cells. Blood, 2010, 116, 352-352.	1.4	3
306	Serial Killers and Mass Murderers: Engineered T Cells Are up to the Task. Cancer Immunology Research, 2015, 3, 470-472.	3.4	2

#	Article	IF	CITATIONS
307	Adoptive Cellular Therapy With Synthetic T Cells as an "Instant Vaccine―for Cancer and Immunity. , 2016, , 581-596.		2
308	A Failure to Start: Aborted Activation of CAR T Cells in Chronic Lymphocytic Leukemia. Blood, 2019, 134, 681-681.	1.4	2
309	Rethinking the Regulatory Infrastructure for Human Gene Transfer Clinical Trials. Molecular Therapy, 2016, 24, 1173-1177.	8.2	1
310	Studying Immunoreceptor Signaling in Human T Cells Using Electroporation of In Vitro Transcribed mRNA. Methods in Molecular Biology, 2017, 1584, 443-450.	0.9	1
311	Bioluminescent Tracking of Human and Mouse Acute Lymphoblastic Leukemia Reveals Potent Immunogenicity of Luciferase In Some Preclinical Models of Leukemia. Blood, 2010, 116, 2140-2140.	1.4	1
312	Adoptive Transfer of Treg-Depleted Donor Th1 and Th2 Cells Safely Accelerates Alloengraftment After Low-Intensity Chemotherapy. Blood, 2010, 116, 521-521.	1.4	1
313	Stable Gene Transfer and Expression in Human Primary T-Cells by the Sleeping Beauty Transposon System Blood, 2005, 106, 5539-5539.	1.4	1
314	Genetically Modified T Cells for Human Gene Therapy. , 0, , 193-205.		0
315	Costimulated, Tumor-Derived Donor Lymphocyte (TDL) Infusion for B-Cell Tumor Relapse After Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2010, 116, 683-683.	1.4	0
316	Adoptive Immunotherapy with Autologous CD3/CD28-Costimulated T-Cells After Fludarabine-Based Chemotherapy in Patients with Chronic Lymphocytic Leukemia. Blood, 2011, 118, 2855-2855.	1.4	0
317	A Phase 1 Dose Escalation Study of Infusion of Ex Vivo CD3/CD28 Costimulated Umbilical Cord Blood-Derived T Cells in Adults Undergoing Transplantation for Advanced Hematologic Malignancies. Blood, 2011, 118, 3032-3032.	1.4	0
318	Tumor immunotherapy. , 2013, , 935-945.		0
319	Glycopeptide-Specific Chimeric Antigen Receptor Targeting of T Cell Leukemia. Blood, 2014, 124, 4803-4803.	1.4	0
320	Signaling Domain of Chimeric Antigen Receptors Can Reprogram T Cells. Blood, 2014, 124, 551-551.	1.4	0