
Zbigniew R Zytkiewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7295901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strain control in graphene on GaN nanowires: Towards pseudomagnetic field engineering. Carbon, 2022, 186, 128-140.	5.4	1
2	Alternative Route of Fracturing in GaN Films Formed by Nanowires Coalescence on Si Substrate. Crystal Growth and Design, 2022, 22, 3264-3270.	1.4	0
3	Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects. Beilstein Journal of Nanotechnology, 2021, 12, 566-577.	1.5	3
4	Influence of Growth Polarity Switching on the Optical and Electrical Properties of GaN/AlGaN Nanowire LEDs. Electronics (Switzerland), 2021, 10, 45.	1.8	3
5	Determination of Fermi Level Position at the Graphene/GaN Interface Using Electromodulation Spectroscopy. Advanced Materials Interfaces, 2020, 7, 2001220.	1.9	11
6	Influence of Si Substrate Preparation Procedure on Polarity of Self-Assembled GaN Nanowires on Si(111): Kelvin Probe Force Microscopy Studies. Electronics (Switzerland), 2020, 9, 1904.	1.8	1
7	Chemical bonding of nitrogen formed by nitridation of crystalline and amorphous aluminum oxide studied by X-ray photoelectron spectroscopy. RSC Advances, 2020, 10, 27932-27939.	1.7	14
8	GaN Nanowire Array for Charge Transfer in Hybrid GaN/P3HT:PC71BM Photovoltaic Heterostructure Fabricated on Silicon. Materials, 2020, 13, 4755.	1.3	2
9	Surface Diffusion of Gallium as the Origin of Inhomogeneity in Selective Area Growth of GaN Nanowires on Al _{<i>x</i>} O _{<i>y</i>} Nucleation Stripes. Crystal Growth and Design, 2020, 20, 4770-4778.	1.4	6
10	Selective area formation of GaN nanowires on GaN substrates by the use of amorphous Al _x O _y nucleation layer. Nanotechnology, 2020, 31, 184001.	1.3	8
11	Compositionally Graded AlGaN Nanostructures: Strain Distribution and X-ray Diffraction Reciprocal Space Mapping. Crystal Growth and Design, 2020, 20, 1543-1551.	1.4	7
12	Hybrid P3HT: PCBM/GaN nanowire/Si cascade heterojunction for photovoltaic application. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	7
13	Defect-related photoluminescence and photoluminescence excitation as a method to study the excitonic bandgap of AlN epitaxial layers: Experimental and <i>ab initio</i> analysis. Applied Physics Letters, 2020, 117, .	1.5	9
14	Comprehensive analysis of the self-assembled formation of GaN nanowires on amorphous Al <i> _x </i> O <i> _y </i> : <i>in situ</i> quadrupole mass spectrometry studies. Nanotechnology, 2019, 30, 154002.	1.3	9
15	Surface-enhanced Raman scattering in graphene deposited on Al Ga1â^'N/GaN axial heterostructure nanowires. Applied Surface Science, 2019, 475, 559-564.	3.1	7
16	Reflectance and fast polarization dynamics of a GaN/Si nanowire ensemble. Journal of Physics Condensed Matter, 2018, 30, 315301.	0.7	3
17	Experimental and theoretical analysis of influence of barrier composition on optical properties of GaN/AlGaN multi-quantum wells: Temperature- and pressure-dependent photoluminescence studies. Journal of Alloys and Compounds, 2018, 769, 1064-1071.	2.8	9
18	Surface-enhanced Raman scattering of graphene caused by self-induced nanogating by GaN nanowire array. Carbon, 2018, 128, 70-77.	5.4	8

#	Article	IF	CITATIONS
19	Contactless electroreflectance studies of the Fermi level position at the air/GaN interface: Bistable nature of the Ga-polar surface. Applied Surface Science, 2017, 396, 1657-1666.	3.1	27
20	Arrangement of GaN nanowires on Si(001) substrates studied by X-ray diffraction: Importance of silicon nitride interlayer. Applied Surface Science, 2017, 425, 1014-1019.	3.1	10
21	High-temperature ultraviolet detection based on surface photovoltage effect in SiN passivated n-GaN films. Applied Physics Letters, 2016, 109, .	1.5	5
22	An influence of the local strain on cathodoluminescence of GaN/AlxGa1â^'xN nanowire structures. Journal of Applied Physics, 2016, 120, .	1.1	9
23	Engineering of electric field distribution in GaN(cap)/AlGaN/GaN heterostructures: theoretical and experimental studies. Journal Physics D: Applied Physics, 2016, 49, 345106.	1.3	10
24	Analysis of Incubation Times for the Self-Induced Formation of GaN Nanowires: Influence of the Substrate on the Nucleation Mechanism. Crystal Growth and Design, 2016, 16, 7205-7211.	1.4	26
25	Self-assembled growth of GaN nanowires on amorphous AlxOy: from nucleation to the formation of dense nanowire ensembles. Nanotechnology, 2016, 27, 325601.	1.3	23
26	X-ray Reciprocal Space Mapping of Graded Al x Ga1 â^' x N Films and Nanowires. Nanoscale Research Letters, 2016, 11, 81.	3.1	0
27	Enhanced Raman scattering and weak localization in graphene deposited on GaN nanowires. Physical Review B, 2015, 92, .	1.1	9
28	Kinetics of self-induced nucleation and optical properties of GaN nanowires grown by plasma-assisted molecular beam epitaxy on amorphous AlxOy. Journal of Applied Physics, 2015, 118, .	1.1	21
29	Structural, electrical, and optical characterization of coalescentp-nGaN nanowires grown by molecular beam epitaxy. Journal of Applied Physics, 2015, 118, 224307.	1.1	2
30	High-resolution X-ray diffraction analysis of strain distribution in GaN nanowires on Si(111) substrate. Nanoscale Research Letters, 2015, 10, 51.	3.1	21
31	Optical properties of pure and Ce3+ doped gadolinium gallium garnet crystals and epitaxial layers. Journal of Luminescence, 2015, 164, 31-37.	1.5	13
32	Dynamics of stacking faults luminescence in GaN/Si nanowires. Journal of Luminescence, 2014, 155, 293-297.	1.5	24
33	Optical and Electrical Studies of Graphene Deposited on GaN Nanowires. Acta Physica Polonica A, 2014, 126, 1087-1089.	0.2	0
34	Deep traps in n-type GaN epilayers grown by plasma assisted molecular beam epitaxy. Journal of Applied Physics, 2014, 115, 023102.	1.1	7
35	Enhanced catalyst-free nucleation of GaN nanowires on amorphous Al2O3 by plasma-assisted molecular beam epitaxy. Journal of Applied Physics, 2014, 115, 043517.	1.1	27
36	Growth by molecular beam epitaxy and properties of inclined GaN nanowires on Si(001) substrate. Nanotechnology, 2014, 25, 135610.	1.3	28

#	Article	IF	CITATIONS
37	Modelling of X-ray diffraction curves for GaN nanowires on Si(1 1 1). Journal of Crystal Growth, 2014, 401, 347-350.	0.7	12
38	Arrangement of GaN nanowires grown by plasma-assisted molecular beam epitaxy on silicon substrates with amorphous Al2O3 buffers. Journal of Crystal Growth, 2014, 401, 657-660.	0.7	21
39	Measurements of strain in AlGaN/GaN HEMT structures grown by plasma assisted molecular beam epitaxy. Journal of Crystal Growth, 2014, 401, 355-358.	0.7	2
40	Application of ZnO single crystals for light-induced water splitting under UV irradiation. Materials Chemistry and Physics, 2014, 143, 1253-1257.	2.0	6
41	Electrical characterization of ensemble of GaN nanowires grown by the molecular beam epitaxy technique. Applied Physics Letters, 2013, 103, .	1.5	11
42	Deep levels in GaN studied by deep level transient spectroscopy and Laplace transform deep-level spectroscopy. Materials Science-Poland, 2013, 31, 572-576.	0.4	12
43	Influence of AIN layer on electric field distribution in GaN/AlGaN/GaN transistor heterostructures. Journal of Applied Physics, 2013, 114, .	1.1	5
44	Influence of substrate nitridation temperature on epitaxial alignment of GaN nanowires to Si(111) substrate. Nanotechnology, 2013, 24, 035703.	1.3	74
45	Optimization of nitrogen plasma source parameters by measurements of emitted light intensity for growth of GaN by molecular beam epitaxy. Thin Solid Films, 2013, 534, 107-110.	0.8	23
46	Structural and optical characterization of GaN nanowires. Journal of Applied Physics, 2013, 113, .	1.1	6
47	The Growth and Micro-Raman Characterization of GaN Nanowires. Sensor Letters, 2013, 11, 1555-1559.	0.4	Ο
48	Structural and Chemical Characterization of Al(Ga)N/GaN Quantum Well Structures Grown by Plasma Assisted Molecular Beam Epitaxy. Solid State Phenomena, 2012, 186, 70-73.	0.3	1
49	Control of growth uniformity of III–V bulk crystals grown by contactless liquid phase electroepitaxy. Journal of Crystal Growth, 2012, 355, 1-7.	0.7	Ο
50	Electrical characterisation of GaN and AlGaN layers grown by plasma-assisted MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 1043-1047.	0.8	4
51	Plasmaâ€assisted MBE growth of GaN on Si(111) substrates. Crystal Research and Technology, 2012, 47, 307-312.	0.6	26
52	Influence of Substrate on Crystallographic Quality of AlGaN/GaN HEMT Structures Grown by Plasma-Assisted MBE. Acta Physica Polonica A, 2012, 121, 899-902.	0.2	11
53	Photoluminescence Dynamics of GaN/Si Nanowires. Acta Physica Polonica A, 2012, 122, 1001-1003.	0.2	7
54	P2.4.18 MBE growth of GaN nanowires on Si(111) substrates for gas sensor applications. , 2012, , .		0

#	Article	IF	CITATIONS
55	Unlimited Growth of III–V Bulk Crystals by Liquid-Phase Electroepitaxy. Crystal Growth and Design, 2011, 11, 4684-4689.	1.4	1
56	Time dependent simulations of the growth of Ill–V crystals by the liquid phase electroepitaxy. Journal of Crystal Growth, 2011, 318, 351-355.	0.7	3
57	The Impact of Bulk Defects, Surface States, and Excitons on Yellow and Ultraviolet Photoluminescence in GaN. Acta Physica Polonica A, 2011, 120, A-73-A-75.	0.2	6
58	Numerical analysis of growth kinetics of bulk III-V crystals grown by liquid phase electroepitaxy. Crystal Research and Technology, 2010, 45, 1290-1294.	0.6	3
59	Epitaxial Lateral Overgrowth of Semiconductors. , 2010, , 999-1039.		6
60	Spatially resolved x-ray diffraction study of GaSb layers grown laterally on SiO2-masked GaAs substrates. Journal of Applied Physics, 2009, 106, 043521.	1.1	3
61	Spatially resolved Xâ€ray diffraction as a tool for strain analysis in laterally modulated epitaxial structures. Crystal Research and Technology, 2009, 44, 1089-1094.	0.6	1
62	Rocking Curve Imaging Studies of Laterally Overgrown GaAs and GaSb Epitaxial Layers. Acta Physica Polonica A, 2009, 116, 976-978.	0.2	1
63	X-ray diffraction micro-imaging of strain in laterally overgrown GaAs layers. Part II: analysis of multi-stripe and fully overgrown layers. Applied Physics A: Materials Science and Processing, 2008, 91, 609-614.	1.1	4
64	X-ray diffraction micro-imaging of strain in laterally overgrown GaAs layers. Part I: analysis of a single GaAs stripe. Applied Physics A: Materials Science and Processing, 2008, 91, 601-607.	1.1	9
65	Spatially Resolved X-ray Diffraction Technique for Crystallographic Quality Inspection of Semiconductor Microstructures. Acta Physica Polonica A, 2008, 114, 1101-1107.	0.2	3
66	Tilt and dislocations in epitaxial laterally overgrown GaAs layers. Journal of Applied Physics, 2007, 101, 013508.	1.1	12
67	Imaging of strain in laterally overgrown GaAs layers by spatially resolved x-ray diffraction. Applied Physics Letters, 2007, 90, 241904.	1.5	14
68	Crystal Defects and Strain of Epitaxial InP Layers Laterally Overgrown on Si. Crystal Growth and Design, 2006, 6, 1096-1100.	1.4	10
69	Interaction of iron with the local environment inSiGealloys investigated with Laplace transform deep level spectroscopy. Physical Review B, 2006, 74, .	1.1	14
70	Coupled plasmon–LO-phonon modes at high-magnetic fields. Physical Review B, 2006, 74, .	1.1	13
71	Computational analysis of lateral overgrowth of GaAs by liquid-phase epitaxy. Journal of Crystal Growth, 2005, 275, e953-e957.	0.7	5
72	Recent progress in lateral overgrowth of semiconductor structures from the liquid phase. Crystal Research and Technology, 2005, 40, 321-328.	0.6	10

#	Article	IF	CITATIONS
73	Properties of ZrN films as substrate masks in liquid phase epitaxial lateral overgrowth of compound semiconductors. Crystal Research and Technology, 2005, 40, 492-497.	0.6	6
74	Stable and metastable configurations of iron atoms in SiGe alloys. Journal of Physics Condensed Matter, 2005, 17, S2267-S2272.	0.7	6
75	Epitaxial lateral overgrowth of semiconductor structures by liquid phase epitaxy. International Journal of Materials and Product Technology, 2005, 22, 50.	0.1	5
76	A model for epitaxial lateral overgrowth of GaAs by liquid-phase electroepitaxy. Journal of Crystal Growth, 2004, 265, 341-350.	0.7	14
77	Structure modifications in silicon irradiated by ultra-short pulses of XUV free electron laser. Journal of Alloys and Compounds, 2004, 382, 264-270.	2.8	11
78	Pressure-induced defect structure changes in thin AlGaAs layers. Journal of Alloys and Compounds, 2004, 362, 254-260.	2.8	3
79	Application of tungsten films for substrate masking in liquid phase epitaxial lateral overgrowth of GaAs. Crystal Research and Technology, 2003, 38, 297-301.	0.6	6
80	Epitaxial lateral overgrowth of GaSb layers by liquid phase epitaxy. Journal of Crystal Growth, 2003, 253, 102-106.	0.7	9
81	Piezoscopic deep-level transient spectroscopy studies of the silicon divacancy. Physical Review B, 2002, 65, .	1.1	19
82	Determination of crystal misorientation in epitaxial lateral overgrowth of GaN. Journal of Crystal Growth, 2002, 243, 94-102.	0.7	16
83	X-ray diffraction studies of epitaxial laterally overgrown (ELOG) GaN layers on sapphire substrates. Journal of Crystal Growth, 2002, 245, 37-49.	0.7	6
84	Laterally overgrown structures as substrates for lattice mismatched epitaxy. Thin Solid Films, 2002, 412, 64-75.	0.8	66
85	Microdefects and nonstoichiometry level in GaAs:Si/GaAs films grown by liquid-phase epitaxy method. Journal of Alloys and Compounds, 2001, 328, 218-221.	2.8	1
86	Strain in epitaxial laterally overgrown (ELO) structures. , 2001, , .		1
87	The application of Makyoh topography for the study of GaAs layers grown by epitaxial lateral overgrowth. Journal of Crystal Growth, 2001, 222, 741-746.	0.7	1
88	Control of adhesion to the mask of epitaxial laterally overgrown GaAs layers. Journal of Applied Physics, 2001, 90, 6140-6144.	1.1	17
89	Pressure sensors based on AlGaAs doped with Te and Sn. High Pressure Research, 2000, 19, 359-365.	0.4	0
90	Effect of stress on interface transformation in thin semiconducting layers. Thin Solid Films, 2000, 380, 117-119.	0.8	6

#	Article	IF	CITATIONS
91	Epitaxial lateral overgrowth of GaAs: effect of doping on LPE growth behaviour. Semiconductor Science and Technology, 1999, 14, 465-469.	1.0	19
92	Synchrotron x-ray topography analysis of GaAs layers grown on GaAs substrates by liquid phase epitaxial lateral overgrowth. Journal Physics D: Applied Physics, 1999, 32, A114-A118.	1.3	11
93	Thermal strain in GaAs layers grown by epitaxial lateral overgrowth on Si substrates. Applied Physics Letters, 1999, 75, 2749-2751.	1.5	20
94	Synchrotron x-ray topographic and high-resolution diffraction analysis of mask-induced strain in epitaxial laterally overgrown GaAs layers. Journal of Applied Physics, 1999, 86, 4298-4303.	1.1	16
95	Strain in GaAs layers grown by liquid phase epitaxial lateral overgrowth. Journal of Applied Physics, 1999, 86, 1965-1969.	1.1	18
96	On the applicability of InGaP:Si and AlGaAs:Sn piezoresistive pressure sensors in the 2.5 GPa range. Sensors and Actuators A: Physical, 1999, 78, 130-137.	2.0	2
97	Electrical Properties of InGaP:Si and AlGaAs:Sn Epitaxial Layers. Physica Status Solidi (B): Basic Research, 1999, 211, 565-570.	0.7	1
98	Anisotropic Misfit Strain Relaxation in Thin Epitaxial Layers. Physica Status Solidi A, 1999, 171, 289-294.	1.7	14
99	Epitaxial Lateral Overgrowth of GaAs: Principle and Growth Mechanism. Crystal Research and Technology, 1999, 34, 573-582.	0.6	39
100	Influence of high hydrostatic pressure–high temperature treatment on defect structure of AlGaAs layers. Journal of Alloys and Compounds, 1999, 286, 279-283.	2.8	9
101	Epitaxial Lateral Overgrowth of Gallium Arsenide Studied by Synchrotron Topography. Materials Research Society Symposia Proceedings, 1999, 570, 181.	0.1	2
102	Mask-Induced Strain in Gaas Layers Grown by Liquid Phase Epitaxial Lateral Overgrowth. Materials Research Society Symposia Proceedings, 1999, 570, 273.	0.1	7
103	Microscopic bending of GaAs layers grown by epitaxial lateral overgrowth. Journal of Applied Physics, 1998, 84, 6937-6939.	1.1	21
104	Epitaxial Lateral Overgrowth - a Tool for Dislocation Blockade in Multilayer Systems. Acta Physica Polonica A, 1998, 94, 219-227.	0.2	2
105	Influence of Si Doping on Epitaxial Lateral Overgrowth of GaAs. , 1998, , 71-74.		0
106	Joule effect as a barrier for unrestricted growth of bulk crystals by liquid phase electroepitaxy. Journal of Crystal Growth, 1997, 172, 259-268.	0.7	21
107	Effect of Doping on Ga _{1-x} Al _x As Structural Properties. Acta Physica Polonica A, 1997, 91, 911-917.	0.2	2
108	Substrate Defects Filtration During Epitaxial Lateral Overgrowth of GaAs. Acta Physica Polonica A, 1997, 92, 1079-1082.	0.2	5

#	Article	IF	CITATIONS
109	Photoinduced Defects Creation on Sulfur Passivated Surface of GaAs. Acta Physica Polonica A, 1997, 92, 1083-1086.	0.2	2
110	Anisotropic Lattice Misfit Relaxation in AlGaAs Semi-Bulk Layers Grown on GaAs Substrates by Liquid Phase Electroepitaxy. Acta Physica Polonica A, 1997, 92, 1092-1096.	0.2	1
111	High-Pressure Diffraction Study of Ga _{1-x} Al _x As. Acta Physica Polonica A, 1997, 91, 993-996.	0.2	0
112	New donor doping sources for molecular beam epitaxy of AlGaSb and AlGaAs. Materials Science and Technology, 1996, 12, 193-196.	0.8	0
113	Rietveld Refinement for Selected Pseudobinary Semiconductors. Materials Science Forum, 1996, 228-231, 689-694.	0.3	1
114	Lattice Sites of Silicon Impurities in AlGaAs Grown by Liquid Phase Epitaxy. Acta Physica Polonica A, 1996, 90, 865-868.	0.2	0
115	Liquid phase electroepitaxial growth of thick and compositionally uniform AlGaAs layers on GaAs substrates. Journal of Crystal Growth, 1995, 146, 283-286.	0.7	12
116	Structure of theDXstate formed by donors in (Al,Ga)As and Ga(As,P). Journal of Applied Physics, 1995, 78, 2468-2477.	1.1	30
117	Lattice constants and thermal expansion of AlxGa1â^'xAs:Te. Journal of Applied Physics, 1995, 78, 6994-6998.	1.1	8
118	The use of Ga2Se3and Ga2S3as donor doping sources for MBE-grown AlxGa1-xSb and AlxGa1-xAs. Semiconductor Science and Technology, 1995, 10, 509-514.	1.0	0
119	Silicon-Related Local Vibrational Mode Absorption in Bulk AlGaAs. Materials Science Forum, 1995, 196-201, 1091-1096.	0.3	0
120	Optical and Electrical Properties of Bulk GaSb and AlGaSb. Acta Physica Polonica A, 1995, 88, 763-766.	0.2	2
121	New Local Vibrational Modes Related to Silicon in Bulk AlGaAs. Acta Physica Polonica A, 1995, 88, 759-762.	0.2	1
122	Electroepitaxial Growth of GaSb and AlGaSb Thick Epitaxial Layers. Acta Physica Polonica A, 1995, 88, 965-968.	0.2	0
123	Static and Dynamic Absorption Measurements of the DX Center in Al _x Ga _{1-x} As. Materials Science Forum, 1994, 143-147, 1093-1098.	0.3	0
124	Evidence for Alloy Splitting of the Te DX State in Al _x Ga _{1-x} As. Materials Science Forum, 1994, 143-147, 1123-1128.	0.3	1
125	Magnetic-resonance studies of tellurium-dopedAlxGa1â^'xAs. Physical Review B, 1994, 50, 2645-2648.	1.1	7
126	Influence of convection on the composition profiles of thick GaAlAs layers grown by liquid phase electroepitaxy. Journal of Crystal Growth, 1993, 131, 426-430.	0.7	19

#	Article	IF	CITATIONS
127	Determination of Ga1â^'xAlxAs epitaxial layer composition by X-ray intensity measurements of quasi-forbidden reflections. Journal of Crystal Growth, 1993, 126, 168-173.	0.7	1
128	Observation of the intermediate energy state of the DX centre in AlxGa1-xAs:Te in non-stationary absorption experiments. Semiconductor Science and Technology, 1993, 8, 1973-1976.	1.0	0
129	X1-X3conduction-band splitting ofAlxGa1â^'xAs observed in far-infrared photoinduced absorption related to theDXdefect. Physical Review B, 1993, 47, 12558-12562.	1.1	7
130	Alloy Splitting of the Te-DX States in AlxGa1-xAs. Acta Physica Polonica A, 1993, 84, 769-772.	0.2	0
131	Molecular Beam Epitaxy of AlxGa1-xSb and AlxGa1-xAs: New Donor Doping Sources. Acta Physica Polonica A, 1993, 84, 826-828.	0.2	0
132	Photo-ESR Study of the DX to Shallow Donor Conversion in Te Doped Al _x Ga _{1-x} As. Acta Physica Polonica A, 1993, 84, 757-760.	0.2	0
133	Hole capture at theDX(Si) andDX(Te) defects in AlxGa1â^xAs. Journal of Applied Physics, 1992, 72, 3198-3200.	1.1	17
134	Evidence for substitutional-interstitial defect motion leading toDXbehavior by donors inAlxGa1â^'xAs. Physical Review Letters, 1992, 68, 2508-2511.	2.9	62
135	Compositional control of thick Ga1 - xAl ϰ As layers (xâ‰ 9 .72) grown by liquid phase electroepitaxy. Journal of Crystal Growth, 1992, 121, 457-462.	0.7	18
136	A Role of Intermediate Charge State in the DX Center Photoionisation in AlxGa1-xAs:Se. Acta Physica Polonica A, 1992, 82, 801-804.	0.2	1
137	AlGaAs to GaAs Energy Transfer Mechanisms in AlGaAs/GaAs Structures. Acta Physica Polonica A, 1992, 82, 713-716.	0.2	0
138	Electron Spin Resonance Studies of Te Doped AlGaAs Epilayers. Acta Physica Polonica A, 1992, 82, 817-820.	0.2	0
139	Formation of the DX State by Donors in AlxGa1-xAs - Experiment. Acta Physica Polonica A, 1992, 82, 905-907.	0.2	0
140	Diffusion Limited LPE Growth of GaxIn1â^'xP on (100) GaAs. Physica Status Solidi A, 1991, 128, 123-127.	1.7	2
141	New DX-Related Photoinduced Absorption in AlGaAs:Te. Acta Physica Polonica A, 1991, 80, 397-400.	0.2	1
142	On the nature of the edge growth in liquid phase epitaxy of GaAs. Journal of Crystal Growth, 1989, 94, 919-922.	0.7	3
143	Electroepitaxy from a limited solution volume: Growth kinetics calculations. Journal of Crystal Growth, 1983, 61, 665-674.	0.7	11
144	GaxIn1â^'xAsyP1â^'y/GaAs structure: Liquid phase epitaxial growth and analysis of lattice constants matching conditions. Physica Status Solidi A, 1980, 57, 489-497.	1.7	3

#	Article	IF	CITATIONS
145	Lattice matching in GaxIn1â^'xAsyP1â^'y-GaAs and GaxIn1â^'xAsyP1â^'y-InP structures. Physica Status Solidi A, 1979, 53, K165-K168.	1.7	4
146	Investigating the secondary electron emission of nanomaterials induced by a high resolution proton beam. Physica Status Solidi (B): Basic Research, 0, , .	0.7	0