Mathilde Richard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7295883/publications.pdf Version: 2024-02-01

MATHILDE RICHARD

#	Article	IF	CITATIONS
1	SARS-CoV-2 is transmitted via contact and via the air between ferrets. Nature Communications, 2020, 11, 3496.	5.8	395
2	Limited airborne transmission of H7N9 influenza A virus between ferrets. Nature, 2013, 501, 560-563.	13.7	182
3	Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. European Respiratory Journal, 2016, 47, 954-966.	3.1	158
4	One health, multiple challenges: The inter-species transmission of influenza A virus. One Health, 2015, 1, 1-13.	1.5	147
5	Influenza A viruses are transmitted via the air from the nasal respiratory epithelium of ferrets. Nature Communications, 2020, 11, 766.	5.8	130
6	SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nature Communications, 2021, 12, 1653.	5.8	120
7	Influenza A virus transmission via respiratory aerosols or droplets as it relates to pandemic potential. FEMS Microbiology Reviews, 2016, 40, 68-85.	3.9	86
8	Influenza virus and endothelial cells: a species specific relationship. Frontiers in Microbiology, 2014, 5, 653.	1.5	68
9	Co-circulation of genetically distinct highly pathogenic avian influenza A clade 2.3.4.4 (H5N6) viruses in wild waterfowl and poultry in Europe and East Asia, 2017–18. Virus Evolution, 2019, 5, vez004.	2.2	63
10	Wild ducks excrete highly pathogenic avian influenza virus H5N8 (2014–2015) without clinical or pathological evidence of disease. Emerging Microbes and Infections, 2018, 7, 1-10.	3.0	62
11	Multiple Natural Substitutions in Avian Influenza A Virus PB2 Facilitate Efficient Replication in Human Cells. Journal of Virology, 2016, 90, 5928-5938.	1.5	47
12	Influenza A Virus Reassortment Is Limited by Anatomical Compartmentalization following Coinfection via Distinct Routes. Journal of Virology, 2018, 92, .	1.5	45
13	Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus. Journal of Virology, 2016, 90, 3794-3799.	1.5	44
14	Avian influenza A viruses: from zoonosis to pandemic. Future Virology, 2014, 9, 513-524.	0.9	42
15	Human Clade 2.3.4.4 A/H5N6 Influenza Virus Lacks Mammalian Adaptation Markers and Does Not Transmit via the Airborne Route between Ferrets. MSphere, 2018, 3, .	1.3	42
16	Low Virulence and Lack of Airborne Transmission of the Dutch Highly Pathogenic Avian Influenza Virus H5N8 in Ferrets. PLoS ONE, 2015, 10, e0129827.	1.1	40
17	Whole Genome Sequencing of A(H3N2) Influenza Viruses Reveals Variants Associated with Severity during the 2016–2017 Season. Viruses, 2019, 11, 108.	1.5	35
18	Combinatorial Effect of Two Framework Mutations (E119V and I222L) in the Neuraminidase Active Site of H3N2 Influenza Virus on Resistance to Oseltamivir. Antimicrobial Agents and Chemotherapy, 2011, 55, 2942-2952.	1.4	34

#	Article	lF	CITATIONS
19	Neuraminidase-mediated haemagglutination of recent human influenza A(H3N2) viruses is determined by arginine 150 flanking the neuraminidase catalytic site. Journal of General Virology, 2017, 98, 1274-1281.	1.3	34
20	Avian Influenza A Virus Pandemic Preparedness and Vaccine Development. Vaccines, 2018, 6, 46.	2.1	29
21	Characterizing Emerging Canine H3 Influenza Viruses. PLoS Pathogens, 2020, 16, e1008409.	2.1	29
22	Subtype-specific structural constraints in the evolution of influenza A virus hemagglutinin genes. Scientific Reports, 2016, 6, 38892.	1.6	27
23	Induction of Cross-Clade Antibody and T-Cell Responses by a Modified Vaccinia Virus Ankara–Based Influenza A(H5N1) Vaccine in a Randomized Phase 1/2a Clinical Trial. Journal of Infectious Diseases, 2018, 218, 614-623.	1.9	25
24	Impact of influenza A virus neuraminidase mutations on the stability, activity, and sensibility of the neuraminidase to neuraminidase inhibitors. Journal of Clinical Virology, 2008, 41, 20-24.	1.6	22
25	Rescue of a H3N2 Influenza Virus Containing a Deficient Neuraminidase Protein by a Hemagglutinin with a Low Receptor-Binding Affinity. PLoS ONE, 2012, 7, e33880.	1.1	21
26	Factors determining human-to-human transmissibility of zoonotic pathogens via contact. Current Opinion in Virology, 2017, 22, 7-12.	2.6	21
27	Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Influenza Virus between Mammals. Cell Host and Microbe, 2020, 28, 602-613.e7.	5.1	20
28	Mechanisms and risk factors for mutation from low to highly pathogenic avian influenza virus. EFSA Supporting Publications, 2017, 14, 1287E.	0.3	17
29	Creating Disease Resistant Chickens: A Viable Solution to Avian Influenza?. Viruses, 2018, 10, 561.	1.5	17
30	Mutations Driving Airborne Transmission of A/H5N1 Virus in Mammals Cause Substantial Attenuation in Chickens only when combined. Scientific Reports, 2017, 7, 7187.	1.6	16
31	Influenza A (H10N7) Virus Causes Respiratory Tract Disease in Harbor Seals and Ferrets. PLoS ONE, 2016, 11, e0159625.	1.1	16
32	Conserved structural RNA domains in regions coding for cleavage site motifs in hemagglutinin genes of influenza viruses. Virus Evolution, 2019, 5, vez034.	2.2	15
33	Productive replication of avian influenza viruses in chicken endothelial cells is determined by hemagglutinin cleavability and is related to innate immune escape. Virology, 2018, 513, 29-42.	1.1	13
34	Reduced Replication of Highly Pathogenic Avian Influenza Virus in Duck Endothelial Cells Compared to Chicken Endothelial Cells Is Associated with Stronger Antiviral Responses. Viruses, 2022, 14, 165.	1.5	11
35	Insertions of codons encoding basic amino acids in H7 hemagglutinins of influenza A viruses occur by recombination with RNA at hotspots near snoRNA binding sites. Rna, 2021, 27, 123-132.	1.6	10
36	Lack of Middle East Respiratory Syndrome Coronavirus Transmission in Rabbits. Viruses, 2019, 11, 381.	1.5	9

MATHILDE RICHARD

#	Article	IF	CITATIONS
37	Contribution of Neuraminidase to the Efficacy of Seasonal Split Influenza Vaccines in the Ferret Model. Journal of Virology, 2022, 96, jvi0195921.	1.5	8
38	The culture of primary duck endothelial cells for the study of avian influenza. BMC Microbiology, 2018, 18, 138.	1.3	6
39	H10N8 and H6N1 Maintain Avian Receptor Binding. Cell Host and Microbe, 2015, 17, 292-294.	5.1	5
40	Genetic and antigenic characterization of influenza A/H5N1 viruses isolated from patients in Indonesia, 2008–2015. Virus Genes, 2020, 56, 417-429.	0.7	4
41	Cross-Reactivity Conferred by Homologous and Heterologous Prime-Boost A/H5 Influenza Vaccination Strategies in Humans: A Literature Review. Vaccines, 2021, 9, 1465.	2.1	4
42	In Silico Analyses of the Role of Codon Usage at the Hemagglutinin Cleavage Site in Highly Pathogenic Avian Influenza Genesis. Viruses, 2022, 14, 1352.	1.5	3
43	mSphere of Influence: Resolution of the Structure of an Influenza Virus Polymerase Is a Game Changer. MSphere, 2019, 4, .	1.3	Ο
44	Hemagglutinin Traits Determine Transmission of Avian A/H10N7 Virus between Mammals. SSRN Electronic Journal, 0, , .	0.4	0
45	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
46	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
47	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
48	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
49	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0
50	Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409.		0

Characterizing Emerging Canine H3 Influenza Viruses. , 2020, 16, e1008409. 50