Hans Heugh Wandall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7295879/publications.pdf

Version: 2024-02-01

100 papers 6,638 citations

57758 44 h-index 78 g-index

107 all docs

107 docs citations

107 times ranked

8456 citing authors

#	Article	IF	CITATIONS
1	In-Depth Profiling of <i>O</i> -Glycan Isomers in Human Cells Using C18 Nanoliquid Chromatography–Mass Spectrometry and Glycogenomics. Analytical Chemistry, 2022, 94, 4343-4351.	6.5	13
2	Dissecting Context-Specific Galectin Binding Using Glycoengineered Cell Libraries. Methods in Molecular Biology, 2022, 2442, 205-214.	0.9	1
3	Glycoproteomics. Nature Reviews Methods Primers, 2022, 2, .	21.2	61
4	Genetic glycoengineering in mammalian cells. Journal of Biological Chemistry, 2021, 296, 100448.	3.4	53
5	Site-Specific O-Glycosylation Analysis of SARS-CoV-2 Spike Protein Produced in Insect and Human Cells. Viruses, 2021, 13, 551.	3.3	57
6	Isoforms of MUC16 activate oncogenic signaling through EGF receptors to enhance the progression of pancreatic cancer. Molecular Therapy, 2021, 29, 1557-1571.	8.2	25
7	MUC4 enhances gemcitabine resistance and malignant behaviour in pancreatic cancer cells expressing cancer-associated short O-glycans. Cancer Letters, 2021, 503, 91-102.	7.2	24
8	Global functions of Oâ€glycosylation: promises and challenges in Oâ€glycobiology. FEBS Journal, 2021, 288, 7183-7212.	4.7	61
9	Mapping of truncated O-glycans in cancers of epithelial and non-epithelial origin. British Journal of Cancer, 2021, 125, 1239-1250.	6.4	29
10	Protocol for CRISPR-Cas9 modification of glycosylation in 3D organotypic skin models. STAR Protocols, 2021, 2, 100668.	1.2	5
11	Mucin-Type O-GalNAc Glycosylation in Health and Disease. Advances in Experimental Medicine and Biology, 2021, 1325, 25-60.	1.6	19
12	Base Editor Correction of COL7A1 in RecessiveÂDystrophic Epidermolysis Bullosa Patient-Derived Fibroblasts and iPSCs. Journal of Investigative Dermatology, 2020, 140, 338-347.e5.	0.7	69
13	INDEL detection, the  Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Research, 2020, 48, 11958-11981.	14.5	51
14	Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Developmental Cell, 2020, 54, 669-684.e7.	7.0	38
15	Cytoplasmic Citrate Flux Modulates the Immune Stimulatory NKG2D Ligand MICA in Cancer Cells. Frontiers in Immunology, 2020, 11, 1968.	4.8	11
16	Oâ€glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Reports, 2020, 21, e48885.	4.5	36
17	A mutation map for human glycoside hydrolase genes. Glycobiology, 2020, 30, 500-515.	2.5	6
18	Multiplexed Detection of Autoantibodies to Glycopeptides Using Microarray. Methods in Molecular Biology, 2019, 2024, 199-211.	0.9	1

#	Article	IF	CITATIONS
19	Improved CRISPR/Cas9 gene editing by fluorescence activated cell sorting of green fluorescence protein tagged protoplasts. BMC Biotechnology, 2019, 19, 36.	3.3	22
20	Fast and Quantitative Identification of Ex Vivo Precise Genome Targeting-Induced Indel Events by IDAA. Methods in Molecular Biology, 2019, 1961, 45-66.	0.9	3
21	A validated gRNA library for CRISPR/Cas9 targeting of the human glycosyltransferase genome. Glycobiology, 2018, 28, 295-305.	2.5	70
22	GlycoDomainViewer: a bioinformatics tool for contextual exploration of glycoproteomes. Glycobiology, 2018, 28, 131-136.	2.5	25
23	TAILS N-terminomics and proteomics reveal complex regulation of proteolytic cleavage by O-glycosylation. Journal of Biological Chemistry, 2018, 293, 7629-7644.	3.4	25
24	Global aspects of viral glycosylation. Glycobiology, 2018, 28, 443-467.	2.5	201
25	Glycosyltransferase genes that cause monogenic congenital disorders of glycosylation are distinct from glycosyltransferase genes associated with complex diseases. Glycobiology, 2018, 28, 284-294.	2.5	43
26	De novo expression of human polypeptide N-acetylgalactosaminyltransferase 6 (GalNAc-T6) in colon adenocarcinoma inhibits the differentiation of colonic epithelium. Journal of Biological Chemistry, 2018, 293, 1298-1314.	3.4	61
27	Galectin binding to cells and glycoproteins with genetically modified glycosylation reveals galectin–glycan specificities in a natural context. Journal of Biological Chemistry, 2018, 293, 20249-20262.	3.4	67
28	Genetically engineered cell factories produce glycoengineered vaccines that target antigen-presenting cells and reduce antigen-specific T-cell reactivity. Journal of Allergy and Clinical Immunology, 2018, 142, 1983-1987.	2.9	17
29	Viral glycoproteomes: technologies for characterization and outlook for vaccine design. FEBS Letters, 2018, 592, 3898-3920.	2.8	23
30	The glycosphingolipid MacCer promotes synaptic bouton formation in Drosophila by interacting with Wnt. ELife, $2018,7,.$	6.0	20
31	Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nature Protocols, 2017, 12, 581-603.	12.0	103
32	Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Scientific Reports, 2017, 7, 45341.	3.3	29
33	Mactosylceramide prevents glial cell overgrowth by inhibiting insulin and fibroblast growth factor receptor signaling. Journal of Cellular Physiology, 2017, 232, 3112-3127.	4.1	4
34	Reduced ferritin levels in individuals with nonâ€O blood group: results from the Danish Blood Donor Study. Transfusion, 2017, 57, 2914-2919.	1.6	7
35	Characterizing the O-glycosylation landscape of human plasma, platelets, and endothelial cells. Blood Advances, 2017, 1, 429-442.	5.2	121
36	Dynamics of Indel Profiles Induced by Various CRISPR/Cas9 Delivery Methods. Progress in Molecular Biology and Translational Science, 2017, 152, 49-67.	1.7	27

#	Article	IF	Citations
37	Global Mapping of O-Glycosylation of Varicella Zoster Virus, Human Cytomegalovirus, and Epstein-Barr Virus. Journal of Biological Chemistry, 2016, 291, 12014-12028.	3.4	59
38	Loss of Function of GALNT2 Lowers High-Density Lipoproteins in Humans, Nonhuman Primates, and Rodents. Cell Metabolism, 2016, 24, 234-245.	16.2	103
39	Viral Oâ€GalNAc peptide epitopes: a novel potential target in viral envelope glycoproteins. Reviews in Medical Virology, 2016, 26, 34-48.	8.3	14
40	An innate antiviral pathway acting before interferons at epithelial surfaces. Nature Immunology, 2016, 17, 150-158.	14.5	59
41	Deconstruction of Oâ€glycosylation—Gal <scp>NA</scp> câ€₹ isoforms direct distinct subsets of theÂOâ€glycoproteome. EMBO Reports, 2015, 16, 1713-1722.	4.5	91
42	Glycoproteomic Analysis of Seven Major Allergenic Proteins Reveals Novel Post-translational Modifications. Molecular and Cellular Proteomics, 2015, 14, 191-204.	3.8	32
43	Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Research, 2015, 43, e59-e59.	14.5	151
44	Engineered CHO cells for production of diverse, homogeneous glycoproteins. Nature Biotechnology, 2015, 33, 842-844.	17.5	213
45	A Strategy for O-Glycoproteomics of Enveloped Virusesâ€"the O-Glycoproteome of Herpes Simplex Virus Type 1. PLoS Pathogens, 2015, 11, e1004784.	4.7	46
46	Auto-reactive T cells revised. Overestimation based on methodology?. Journal of Immunological Methods, 2015, 420, 56-59.	1.4	2
47	A glycogene mutation map for discovery of diseases of glycosylation. Glycobiology, 2015, 25, 211-224.	2.5	52
48	Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. Glycobiology, 2015, 25, 55-65.	2.5	89
49	Malignant T Cells Secrete Galectins and Induce Epidermal Hyperproliferation and Disorganized Stratification in a Skin Model of Cutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2015, 135, 238-246.	0.7	28
50	Protein O-GalNAc Glycosylation: Most Complex and Differentially Regulated PTM., 2015,, 1049-1064.		2
51	Ectopic expression of a novel CD22 splice-variant regulates survival and proliferation in malignant T cells from cutaneous T cell lymphoma (CTCL) patients. Oncotarget, 2015, 6, 14374-14384.	1.8	4
52	Immature truncated O-glycophenotype of cancer directly induces oncogenic features. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4066-75.	7.1	251
53	High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs. Nucleic Acids Research, 2014, 42, e84-e84.	14.5	71
54	Microvesicle Cargo of Tumor-Associated MUC1 to Dendritic Cells Allows Cross-presentation and Specific Carbohydrate Processing. Cancer Immunology Research, 2014, 2, 177-186.	3.4	23

#	Article	IF	CITATIONS
55	Cancerâ€associated autoantibodies to MUC1 and MUC4—A blinded case–control study of colorectal cancer in UK collaborative trial of ovarian cancer screening. International Journal of Cancer, 2014, 134, 2180-2188.	5.1	49
56	Protein O-GalNAc Glycosylation: The Most Complex and Differentially Regulated PTM., 2014, , 1-14.		4
57	Precision genome editing: A small revolution for glycobiology. Glycobiology, 2014, 24, 663-680.	2.5	47
58	Potential for novel MUC1 glycopeptide-specific antibody in passive cancer immunotherapy. Immunopharmacology and Immunotoxicology, 2013, 35, 649-652.	2.4	9
59	Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO Journal, 2013, 32, 1478-1488.	7.8	1,130
60	Carbon anhydrase IX specific immune responses in patients with metastatic renal cell carcinoma potentially cured by interleukin-2 based immunotherapy. Immunopharmacology and Immunotoxicology, 2013, 35, 487-496.	2.4	5
61	Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Glycoconjugate Journal, 2013, 30, 227-236.	2.7	57
62	MUC4-specific CTLs. Immunopharmacology and Immunotoxicology, 2013, 35, 202-203.	2.4	0
63	Chemo-Enzymatic Production of O-Glycopeptides for the Detection of Serum Glycopeptide Antibodies. Methods in Molecular Biology, 2013, 1061, 167-179.	0.9	4
64	Glycan-mediated modification of the immune response. Oncolmmunology, 2013, 2, e23659.	4.6	4
65	Aberrant Expression of Mucin Core Proteins and O-Linked Glycans Associated with Progression of Pancreatic Cancer. Clinical Cancer Research, 2013, 19, 1981-1993.	7.0	139
66	Glycan Elongation Beyond the Mucin Associated Tn Antigen Protects Tumor Cells from Immune-Mediated Killing. PLoS ONE, 2013, 8, e72413.	2.5	41
67	Neurofibromatosis-like phenotype in Drosophila caused by lack of glucosylceramide extension. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6987-6992.	7.1	16
68	Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9893-9898.	7.1	113
69	The origin and function of platelet glycosyltransferases. Blood, 2012, 120, 626-635.	1.4	82
70	Elucidation of the sugar recognition ability of the lectin domain of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 3 by using unnatural glycopeptide substrates. Glycobiology, 2012, 22, 429-438.	2.5	16
71	Carbohydrate clearance receptors in transfusion medicine. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1797-1808.	2.4	22
72	Targeting of macrophage galactoseâ€type <scp>C</scp> â€type lectin (<scp>MGL</scp>) induces <scp>DC</scp> signaling and activation. European Journal of Immunology, 2012, 42, 936-945.	2.9	84

#	Article	IF	CITATIONS
73	Cancer Associated Aberrant Protein O-Glycosylation Can Modify Antigen Processing and Immune Response. PLoS ONE, 2012, 7, e50139.	2.5	54
74	Wildtype p53-specific Antibody and T-Cell Responses in Cancer Patients. Journal of Immunotherapy, 2011, 34, 629-640.	2.4	10
75	Autoantibodies as Biomarkers in Cancer. Laboratory Medicine, 2011, 42, 623-628.	1.2	27
76	Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. International Journal of Cancer, 2011, 128, 1860-1871.	5.1	122
77	Lectin Domains of Polypeptide GalNAc Transferases Exhibit Glycopeptide Binding Specificity. Journal of Biological Chemistry, 2011, 286, 32684-32696.	3.4	50
78	Serum Galectin-2, -4, and -8 Are Greatly Increased in Colon and Breast Cancer Patients and Promote Cancer Cell Adhesion to Blood Vascular Endothelium. Clinical Cancer Research, 2011, 17, 7035-7046.	7.0	136
79	A High-Throughput <i>O</i> -Glycopeptide Discovery Platform for Seromic Profiling. Journal of Proteome Research, 2010, 9, 5250-5261.	3.7	84
80	Cancer Biomarkers Defined by Autoantibody Signatures to Aberrant O-Glycopeptide Epitopes. Cancer Research, 2010, 70, 1306-1313.	0.9	227
81	Dual roles for hepatic lectin receptors in the clearance of chilled platelets. Nature Medicine, 2009, 15, 1273-1280.	30.7	192
82	Role of sialic acid for platelet life span: exposure of \hat{l}^2 -galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor $\hat{a} \in \text{``expressing liver macrophages and hepatocytes. Blood, 2009, 114, 1645-1654.}$	1.4	182
83	Influences of tumor stroma on the malignant phenotype. Journal of Oral Pathology and Medicine, 2008, 37, 412-416.	2.7	22
84	Galactosylation does not prevent the rapid clearance of long-term, $4\hat{A}^{\circ}\text{C}$ -stored platelets. Blood, 2008, 111, 3249-3256.	1.4	84
85	Glycans and glycosylation of platelets: current concepts and implications for transfusion. Current Opinion in Hematology, 2008, 15, 606-611.	2.5	14
86	The lectin domains of polypeptide GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation. Glycobiology, 2007, 17, 374-387.	2.5	91
87	Glycosphingolipids with extended sugar chain have specialized functions in development and behavior of Drosophila. Developmental Biology, 2007, 306, 736-749.	2.0	38
88	Molecular basis for the presence of glycosylated onco-foetal fibronectin in oral carcinomas: The production of glycosylated onco-foetal fibronectin by carcinoma cells. Oral Oncology, 2007, 43, 301-309.	1.5	17
89	In Vivo Studies of Autologous Platelets Stored at Room Temperature (22°C), 4°C, and 4°C with Galactosylation Blood, 2006, 108, 580-580.	1.4	2
90	Platelets Lacking Sialic Acid Clear Rapidly from the Circulation Due to Ingestion by Asialoglycoprotein Receptor-Expressing Liver Macrophages and Hepatocytes Blood, 2006, 108, 1521-1521.	1.4	1

#	Article	IF	CITATION
91	Egghead and Brainiac Are Essential for Glycosphingolipid Biosynthesis in Vivo. Journal of Biological Chemistry, 2005, 280, 4858-4863.	3.4	55
92	Structure elucidation of neutral, di-, tri-, and tetraglycosylceramides from High Five cells: identification of a novel (non-arthro-series) glycosphingolipid pathway. Glycobiology, 2005, 15, 1286-1301.	2.5	13
93	Megakaryocytes Package and Deliver Golgi-Associated Glycosyltransferases into Platelets and to Platelet Surfaces Using Dense Granules Blood, 2005, 106, 1643-1643.	1.4	1
94	Drosophila egghead Encodes a $\hat{1}^2$ 1,4-Mannosyltransferase Predicted to Form the Immediate Precursor Glycosphingolipid Substrate for brainiac. Journal of Biological Chemistry, 2003, 278, 1411-1414.	3.4	58
95	The Drosophila Gene brainiac Encodes a Glycosyltransferase Putatively Involved in Glycosphingolipid Synthesis. Journal of Biological Chemistry, 2002, 277, 32421-32429.	3.4	59
96	Partial Vapor-Phase Hydrolysis of Peptide Bonds: A Method for Mass Spectrometric Determination of O-Glycosylated Sites in Glycopeptides. Analytical Biochemistry, 1999, 269, 54-65.	2.4	38
97	Identification of a major human high molecular weight salivary mucin (MG1) as tracheobronchial mucin MUC5B. Glycobiology, 1997, 7, 413-419.	2.5	124
98	Substrate Specificities of Three Members of the Human UDP-N-Acetyl-α-d-galactosamine:Polypeptide N-Acetylgalactosaminyltransferase Family, GalNAc-T1, -T2, and -T3. Journal of Biological Chemistry, 1997, 272, 23503-23514.	3.4	279
99	Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts. European Journal of Oral Sciences, 1997, 105, 593-598.	1.5	16
100	UDP-N-acetyl-α-D-galactosamine:polypeptide N-Acetylgalactosaminyltransferase. Journal of Biological Chemistry, 1995, 270, 24166-24173.	3.4	59