Dino Tonti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7295526/publications.pdf

Version: 2024-02-01

331670 265206 1,874 42 64 21 citations h-index g-index papers 65 65 65 3284 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Single-Step Electrochemical Liquid–Liquid–Solid-Assisted Growth of Ge–Sn Nanostructures as a Long-Life Anode Material with Boosted Areal Capacity. ACS Applied Energy Materials, 2022, 5, 5589-5602.	5.1	1
2	Quantification of charge compensation in lithium- and manganese-rich Li-ion cathode materials by x-ray spectroscopies. Materials Today Physics, 2022, 24, 100687.	6.0	2
3	Local Interactions Governing the Performances of Lithium- and Manganese-Rich Cathodes. Journal of Physical Chemistry Letters, 2021, 12, 1195-1201.	4.6	5
4	Soft X-ray Transmission Microscopy on Lithium-Rich Layered-Oxide Cathode Materials. Applied Sciences (Switzerland), 2021, 11, 2791.	2.5	6
5	Iridium Oxide Redox Gradient Material: <i>Operando</i> X-ray Absorption of Ir Gradient Oxidation States during IrO <i></i> Bipolar Electrochemistry. Journal of Physical Chemistry C, 2021, 125, 16629-16642.	3.1	9
6	Carbons derived from alcohol-treated bacterial cellulose with optimal porosity for Li–O2 batteries. Renewable Energy, 2021, 177, 209-215.	8.9	8
7	Electrochemical growth of two-dimensional tin nano-platelet as high-performance anode material in lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2020, 84, 120-130.	5.8	8
8	Organic Polyradicals as Redox Mediators: Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Efficiency. ACS Applied Materials & Efficiency. ACS Applied Materials & Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Effect of Intramolecular Radical Interactions on Their Efficiency. ACS Applied Materials & Efficiency. ACS Applied & Efficiency. ACS Applied Materials & Efficiency. ACS Applied Mat	8.0	3
9	Role of Manganese in Lithium- and Manganese-Rich Layered Oxides Cathodes. Journal of Physical Chemistry Letters, 2019, 10, 3359-3368.	4.6	29
10	Combined Influence of Meso- and Macroporosity of Soft-Hard Templated Carbon Electrodes on the Performance of Li-O2 Cells with Different Configurations. Nanomaterials, 2019, 9, 810.	4.1	9
11	Tailoring oxygen redox reactions in ionic liquid based Li/O2 batteries by means of the Li+ dopant concentration. Sustainable Energy and Fuels, 2018, 2, 118-124.	4.9	4
12	Thin layer films of copper hexacyanoferrate: Structure identification and analytical applications. Journal of Electroanalytical Chemistry, 2018, 827, 10-20.	3.8	9
13	Influence of the Preparation Temperature on the Photocatalytic Activity of 3D-Ordered Macroporous Anatase Formed with an Opal Polymer Template. ACS Applied Nano Materials, 2018, 1, 2567-2578.	5.0	7
14	Using polyoxometalates to enhance the capacity of lithium–oxygen batteries. Chemical Communications, 2018, 54, 9599-9602.	4.1	14
15	Reactive laser synthesis of nitrogen-doped hybrid graphene-based electrodes for energy storage. Journal of Materials Chemistry A, 2018, 6, 16074-16086.	10.3	26
16	Potassium Salts as Electrolyte Additives in Lithium–Oxygen Batteries. Journal of Physical Chemistry C, 2017, 121, 3822-3829.	3.1	28
17	Architecture of Na-O2 battery deposits revealed by transmission X-ray microscopy. Nano Energy, 2017, 37, 224-231.	16.0	32
18	Ultrahigh energy density supercapacitors through a double hybrid strategy. Materials Today Energy, 2017, 5, 58-65.	4.7	27

#	Article	IF	CITATIONS
19	Discharge products of ionic liquid-based Li-O2 batteries observed by energy dependent soft x-ray transmission microscopy. Journal of Power Sources, 2017, 359, 234-241.	7.8	16
20	Influence of texture in hybrid carbon-phosphomolybdic acid materials on their performance as electrodes in supercapacitors. Carbon, 2017, 111, 74-82.	10.3	18
21	Studies of Lithium-Oxygen Battery Electrodes by Energy- Dependent Full-Field Transmission Soft X-Ray Microscopy. , 2017, , .		2
22	Li/air Flow Battery Employing Ionic Liquid Electrolytes. Energy Technology, 2016, 4, 85-89.	3.8	13
23	Massâ€transport Control on the Discharge Mechanism in Li–O ₂ Batteries Using Carbon Cathodes with Varied Porosity. ChemSusChem, 2015, 8, 3465-3471.	6.8	13
24	Operando UV-visible spectroscopy evidence of the reactions of iodide as redox mediator in Li–O2 batteries. Electrochemistry Communications, 2015, 59, 24-27.	4.7	32
25	Spatial Distributions of Discharged Products of Lithium–Oxygen Batteries Revealed by Synchrotron X-ray Transmission Microscopy. Nano Letters, 2015, 15, 6932-6938.	9.1	57
26	A high voltage solid state symmetric supercapacitor based on graphene–polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolyte. Journal of Materials Chemistry A, 2015, 3, 23483-23492.	10.3	128
27	Organic radicals for the enhancement of oxygen reduction reaction in Li–O ₂ batteries. Chemical Communications, 2015, 51, 17623-17626.	4.1	35
28	Chemical vs. electrochemical extraction of lithium from the Li-excess Li1.10Mn1.90O4 spinel followed by NMR and DRX techniques. Physical Chemistry Chemical Physics, 2014, 16, 3282.	2.8	20
29	Simple Method to Relate Experimental Pore Size Distribution and Discharge Capacity in Cathodes for Li/O2 Batteries. Journal of Physical Chemistry C, 2014, 118, 20772-20783.	3.1	31
30	Effects of architecture on the electrochemistry of binder-free inverse opal carbons as Li–air cathodes in an ionic liquid-based electrolyte. Journal of Materials Chemistry A, 2013, 1, 14270.	10.3	23
31	Redox Properties of Ordered Macroporous Ce–Zr Mixed Oxides. Journal of the Electrochemical Society, 2010, 157, B1499.	2.9	4
32	Redox Properties of Ordered Macroporous Ce-Zr Mixed Oxides. ECS Transactions, 2009, 25, 1573-1582.	0.5	2
33	MEASUREMENT METHODS Electronic and Chemical Properties: X-Ray Photoelectron Spectroscopy. , 2009, , 673-695.		4
34	Multimodal Distribution of Quantum Confinement in Ripened CdSe Nanocrystals. Chemistry of Materials, 2008, 20, 1331-1339.	6.7	12
35	Three-Dimensionally Ordered Macroporous Lithium Manganese Oxide for Rechargeable Lithium Batteries. Chemistry of Materials, 2008, 20, 4783-4790.	6.7	89
36	Linear dichroism of CdSe nanodots: Large anisotropy of the band-gap absorption induced by ground-state dipole moments. Physical Review B, 2008, 77, .	3.2	13

#	Article	IF	CITATIONS
37	Subpicosecond near-infrared fluorescence upconversion study of relaxation processes in PbSe quantum dots. Physical Review B, 2007, 76, .	3.2	45
38	Femtosecond polarization relaxation in CdSe nanocrystals. AIP Conference Proceedings, 2007, , .	0.4	0
39	Temperature effects on the spectral properties of colloidal CdSe nanodots, nanorods, and tetrapods. Applied Physics Letters, 2007, 90, 093104.	3.3	139
40	Chemical Synthesis and Optical Properties of Size-Selected CdSe Tetrapod-Shaped Nanocrystals. ChemPhysChem, 2005, 6, 2505-2507.	2.1	25
41	Spectral and dynamical characterization of multiexcitons in colloidal CdSe semiconductor quantum dots. Physical Review B, 2005, 71, .	3.2	79
42	Synthesis of High Quality Zinc Blende CdSe Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 10533-10537.	2.6	144
43	Origin of the Electrochemical Potential in Intercalation Electrodes:Â Experimental Estimation of the Electronic and Ionic Contributions for Na Intercalated into TiS2. Journal of Physical Chemistry B, 2004, 108, 16093-16099.	2.6	33
44	On the Excitation Wavelength Dependence of the Luminescence Yield of Colloidal CdSe Quantum Dots. Nano Letters, 2004, 4, 2483-2487.	9.1	67
45	Surface Science Investigations of Intercalation Reactions with Layered Metal Dichalcogenides. ChemInform, 2003, 34, no.	0.0	0
46	Photochemically Grown Silver Nanoparticles with Wavelength-Controlled Size and Shape. Nano Letters, 2003, 3, 1565-1568.	9.1	436
47	Electronic passivation of Si(111) by Ga–Se half-sheet termination. Applied Physics Letters, 2002, 80, 1388-1390.	3.3	16
48	Preparation of a Si():GaSe van der Waals surface termination by selenization of a monolayer Ga on Si(). Surface Science, 2002, 515, 296-304.	1.9	17
49	Surface Science Investigations of Intercalation Reactions with Layered Metal Dichalcogenides. , 2002, , 289-354.		4
50	Synchrotron radiation studies of transition metal selenide thin-films formation on Ti, Mo and Cu substrates: in and out diffusion of Li. Thin Solid Films, 2001, 389, 307-314.	1.8	3
51	Synchrotron radiation studies on the growth of TSe2 (T=Ta, Ti) thin films on Ta substrates: intercalation and de-intercalation of Na. Applied Surface Science, 2000, 161, 347-354.	6.1	2
52	In-situ photoelectron spectroscopy study of a TiS2 thin film cathode in an operating Na intercalation electrochemical cell. Ionics, 2000, 6, 196-202.	2.4	17
53	A SYNCHROTRON RADIATION STUDY OF THE FORMATION OF CuxSey AND NaxCuySez THIN FILMS ON Cu SUBSTRATES: Cl2-INDUCED OUT-DIFFUSION OF Na. Surface Review and Letters, 2000, 07, 235-242.	1.1	7
54	A Synchrotron Radiation Study of the Formation of CuxSey and NaxCuySez Thin Films on Cu Substrates; Cl2-Induced Out-Diffusion of Na. Surface Review and Letters, 2000, 7, 235-242.	1.1	1

DINO TONTI

#	Article	IF	CITATION
55	INTERACTION BETWEEN Li AND Na INTERCALATED INTO 1T-TaSe2 LAYER COMPOUNDS. Surface Review and Letters, 1999, 06, 205-211.	1.1	3
56	Cesium deintercalation by Li or Na deposited on 1T-TaSe2 (0001) surfaces. Applied Surface Science, 1999, 147, 101-106.	6.1	5
57	Exchange reaction between Li and Na intercalated into TiS2. Surface Science, 1999, 436, 213-219.	1.9	14
58	In Situ Photoelectron Spectroscopy Study of a TiS[sub 2] Cathode in an Operating Battery System. Electrochemical and Solid-State Letters, 1999, 3, 220.	2.2	11
59	Alkali displacements in intercalated 1T-TaSe2. Ionics, 1998, 4, 93-100.	2.4	4
60	Interaction of Na and Cl2 on WSe2(0001) surfaces. Surface Science, 1998, 402-404, 37-41.	1.9	10
61	Na and Cl2 Interaction on it and 2H–TaSe2(0001) Surfaces. Surface Review and Letters, 1998, 05, 997-1005.	1.1	7
62	Preparation and Photoelectrochemistry of Semiconducting WS2Thin Films. Journal of Physical Chemistry B, 1997, 101, 2485-2490.	2.6	43
63	Photoelectrochemistry of the insertion compounds NaxlnSe and LixlnSe. Solid State Ionics, 1996, 92, 55-63.	2.7	2
64	Facile preparation of glycine-based mesoporous graphitic carbons with embedded cobalt nanoparticles. Journal of Materials Science. 0	3.7	1