
Olivier Gribouval

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7294932/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Pseudouridylation defect due to <i>DKC1</i> and <i>NOP10</i> mutations causes nephrotic syndrome with cataracts, hearing impairment, and enterocolitis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15137-15147.	3.3	32
2	APOL1 risk genotype in European steroid-resistant nephrotic syndrome and/or focal segmental glomerulosclerosis patients of different African ancestries. Nephrology Dialysis Transplantation, 2019, 34, 1885-1893.	0.4	12
3	Defects in t6A tRNA modification due to GON7 and YRDC mutations lead to Galloway-Mowat syndrome. Nature Communications, 2019, 10, 3967.	5.8	66
4	TBC1D8B Loss-of-Function Mutations Lead to X-Linked Nephrotic Syndrome via Defective Trafficking Pathways. American Journal of Human Genetics, 2019, 104, 348-355.	2.6	40
5	APOL1 risk genotype in Europe: Data in patients with focal segmental glomerulosclerosis and after renal transplantation. Nephrologie Et Therapeutique, 2019, 15, S85-S89.	0.2	2
6	Treatment and outcome of congenital nephrotic syndrome. Nephrology Dialysis Transplantation, 2019, 34, 458-467.	0.4	42
7	Human C-terminal CUBN variants associate with chronic proteinuria and normal renal function. Journal of Clinical Investigation, 2019, 130, 335-344.	3.9	54
8	Clinical and genetic heterogeneity in familial steroid-sensitive nephrotic syndrome. Pediatric Nephrology, 2018, 33, 473-483.	0.9	34
9	Comparison of Postdonation Kidney Function Between Caucasian Donors and Low-risk APOL1 Genotype Living Kidney Donors of African Ancestry. Transplantation, 2018, 102, e462-e463.	0.5	5
10	ldentification of genetic causes for sporadic steroid-resistant nephrotic syndrome in adults. Kidney International, 2018, 94, 1013-1022.	2.6	51
11	A homozygous KAT2B variant modulates the clinical phenotype of ADD3 deficiency in humans and flies. PLoS Genetics, 2018, 14, e1007386.	1.5	17
12	Mutations in KEOPS-complex genes cause nephrotic syndrome with primary microcephaly. Nature Genetics, 2017, 49, 1529-1538.	9.4	164
13	Low renal but high extrarenal phenotype variability in Schimke immuno-osseous dysplasia. PLoS ONE, 2017, 12, e0180926.	1.1	25
14	Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. Journal of Clinical Investigation, 2017, 127, 912-928.	3.9	160
15	ADCK4-Associated Glomerulopathy Causes Adolescence-Onset FSGS. Journal of the American Society of Nephrology: JASN, 2016, 27, 63-68.	3.0	79
16	Loss-of-Function Mutations in WDR73 Are Responsible for Microcephaly and Steroid-Resistant Nephrotic Syndrome: Galloway-Mowat Syndrome. American Journal of Human Genetics, 2014, 95, 637-648.	2.6	108
17	A Homozygous Missense Mutation in the Ciliary Gene TTC21B Causes Familial FSGS. Journal of the American Society of Nephrology: JASN, 2014, 25, 2435-2443.	3.0	86
18	Absence of cell surface expression of human ACE leads to perinatal death. Human Molecular Genetics, 2014. 23. 1479-1491.	1.4	14

OLIVIER GRIBOUVAL

#	Article	IF	CITATIONS
19	Mutation-dependent recessive inheritance of NPHS2-associated steroid-resistant nephrotic syndrome. Nature Genetics, 2014, 46, 299-304.	9.4	134
20	<i>NPHS2</i> Mutations in Steroid-Resistant Nephrotic Syndrome: A Mutation Update and the Associated Phenotypic Spectrum. Human Mutation, 2014, 35, 178-186.	1.1	76
21	Integrin Alpha 8 Recessive Mutations Are Responsible for Bilateral Renal Agenesis in Humans. American Journal of Human Genetics, 2014, 94, 799.	2.6	1
22	Integrin Alpha 8 Recessive Mutations Are Responsible for Bilateral Renal Agenesis in Humans. American Journal of Human Genetics, 2014, 94, 288-294.	2.6	89
23	APOL1 Polymorphisms and Development of CKD in an IdenticalÂTwin Donor and Recipient Pair. American Journal of Kidney Diseases, 2014, 63, 816-819.	2.1	51
24	The Kidney as a Reservoir for HIV-1 after Renal Transplantation. Journal of the American Society of Nephrology: JASN, 2014, 25, 407-419.	3.0	121
25	Dysgénésie tubulaire rénale et mutations des gènes du système rénine angiotensine. Bulletin De L'Academie Nationale De Medecine, 2014, 198, 339-349.	0.0	1
26	LMX1B Mutations Cause Hereditary FSGS without Extrarenal Involvement. Journal of the American Society of Nephrology: JASN, 2013, 24, 1216-1222.	3.0	83
27	ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. Journal of Clinical Investigation, 2013, 123, 3243-3253.	3.9	196
28	Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis. Human Mutation, 2012, 33, 316-326.	1.1	86
29	<i>INF2</i> Mutations in Charcot–Marie–Tooth Disease with Glomerulopathy. New England Journal of Medicine, 2011, 365, 2377-2388.	13.9	235
30	Loss-of-function point mutations associated with renal tubular dysgenesis provide insights about renin function and cellular trafficking. Human Molecular Genetics, 2011, 20, 301-311.	1.4	13
31	Mutations in INF2 Are a Major Cause of Autosomal Dominant Focal Segmental Glomerulosclerosis. Journal of the American Society of Nephrology: JASN, 2011, 22, 239-245.	3.0	138
32	Analysis of recessive CD2AP and ACTN4 mutations in steroid-resistant nephrotic syndrome. Pediatric Nephrology, 2010, 25, 445-451.	0.9	27
33	Inherited renal tubular dysgenesis may not be universally fatal. Pediatric Nephrology, 2010, 25, 2531-2534.	0.9	21
34	Genotype–Phenotype Correlations in Non-Finnish Congenital Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2010, 21, 1209-1217.	3.0	127
35	Mutational analysis of the PLCE1 gene in steroid resistant nephrotic syndrome. Journal of Medical Genetics, 2010, 47, 445-452.	1.5	74
36	Angiotensin I-Converting Enzyme Gln1069Arg Mutation Impairs Trafficking to the Cell Surface Resulting in Selective Denaturation of the C-Domain. PLoS ONE, 2010, 5, e10438.	1.1	26

OLIVIER GRIBOUVAL

#	Article	IF	CITATIONS
37	Inherited renal tubular dysgenesis: the first patients surviving the neonatal period. European Journal of Pediatrics, 2008, 167, 311-316.	1.3	28
38	CAN WE LIVE WITHOUT A FUNCTIONAL RENINâ€ANGIOTENSIN SYSTEM?. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 431-433.	0.9	13
39	Nephrin Mutations Can Cause Childhood-Onset Steroid-Resistant Nephrotic Syndrome. Journal of the American Society of Nephrology: JASN, 2008, 19, 1871-1878.	3.0	119
40	<i>COL4A1</i> Mutations and Hereditary Angiopathy, Nephropathy, Aneurysms, and Muscle Cramps. New England Journal of Medicine, 2007, 357, 2687-2695.	13.9	305
41	Autosomal-dominant familial hematuria with retinal arteriolar tortuosity and contractures: A novel syndrome. Kidney International, 2005, 67, 2354-2360.	2.6	36
42	Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nature Genetics, 2005, 37, 964-968.	9.4	244
43	Case Report. A novel NPHS2 gene mutation in Turkish children with familial steroid-resistant nephrotic syndrome. Nephrology, 2004, 9, 310-312.	0.7	3
44	NPHS2 mutation analysis shows genetic heterogeneityof steroid-resistant nephrotic syndrome and lowpost-transplant recurrence. Kidney International, 2004, 66, 571-579.	2.6	313
45	In vivo expression of podocyte slit diaphragm-associated proteins in nephrotic patients with NPHS2 mutation. Kidney International, 2004, 66, 945-954.	2.6	37
46	Plasma Membrane Targeting of Podocin Through the Classical Exocytic Pathway: Effect of NPHS2 Mutations. Traffic, 2004, 5, 37-44.	1.3	86
47	Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts. Journal of Medical Genetics, 2003, 40, 262-267.	1.5	78
48	Podocin Localizes in the Kidney to the Slit Diaphragm Area. American Journal of Pathology, 2002, 160, 131-139.	1.9	284
49	Evidence of clinical and genetic heterogeneity in autosomal dominant congenital cerulean cataracts. Ophthalmic Genetics, 2002, 23, 199-208.	0.5	11
50	The gene mutated in juvenile nephronophthisis type 4 encodes a novel protein that interacts with nephrocystin. Nature Genetics, 2002, 32, 300-305.	9.4	210
51	Clinical and Genetic Evaluation of Familial Steroid-Responsive Nephrotic Syndrome in Childhood. Journal of the American Society of Nephrology: JASN, 2001, 12, 374-378.	3.0	70
52	NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nature Genetics, 2000, 24, 349-354.	9.4	1,270
53	The photoreceptor cell-specific nuclear receptor gene (PNR) accounts for retinitis pigmentosa in the Crypto-Jews from Portugal (Marranos), survivors from the Spanish Inquisition. Human Genetics, 2000, 107, 276-284.	1.8	86
54	Structure of the Gene for Congenital Nephrotic Syndrome of the Finnish Type (NPHS1) and Characterization of Mutations. American Journal of Human Genetics, 1999, 64, 51-61.	2.6	346

OLIVIER GRIBOUVAL

#	Article	IF	CITATIONS
55	Clinical and Genetic Features of Familial Nephrotic Syndromes. Pediatric Research, 1999, 45, 332A-332A.	1.1	0
56	A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nature Genetics, 1998, 18, 319-324.	9.4	562
57	Presymptomatic diagnosis of familial steroid-resistant riephrotic syndrome. Lancet, The, 1996, 347, 1050-1051.	6.3	8
58	Congenital nephrotic syndrome of the Finnish type: linkage to the locus in a non-Finnish population. Pediatric Nephrology, 1996, 10, 135-138.	0.9	38
59	Mapping a gene (SRN1) to chromosome 1q25-q31 in idiopathic nephrotic syndrome confirms a distinct entity of autosomal recessive nephrosis. Human Molecular Genetics, 1995, 4, 2155-2158.	1.4	114