List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7294816/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spray pyrolysisâ€assisted synthesis of hollow cobalt nitrogenâ€doped carbon catalyst for the performance enhancement of membraneless fuel cells. International Journal of Energy Research, 2022, 46, 760-773.	2.2	11
2	Effect of Support for Nonâ€Noble NiMo Electrocatalyst in Alkaline Hydrogen Oxidation. Advanced Sustainable Systems, 2022, 6, .	2.7	8
3	Upcycling waste tires to affordable catalysts for the oxygen reduction reaction. International Journal of Energy Research, 2022, 46, 4645-4654.	2.2	5
4	Pyrrolic N wrapping strategy to maximize the number of single-atomic Fe-Nx sites for oxygen reduction reaction. Journal of Power Sources, 2022, 520, 230904.	4.0	14
5	Safeguarding the RuO ₂ phase against lattice oxygen oxidation during acidic water electrooxidation. Energy and Environmental Science, 2022, 15, 1119-1130.	15.6	66
6	Impact of the dopant-induced ensemble structure of hetero-double atom catalysts in electrochemical NH ₃ production. Journal of Materials Chemistry A, 2022, 10, 6216-6230.	5.2	11
7	Surfactant assisted geometric barriers on PtNi@C electrocatalyst for phosphoric acid fuel cells. Journal of Industrial and Engineering Chemistry, 2022, 110, 198-205.	2.9	6
8	Metastable hexagonal close-packed palladium hydride in liquid cell TEM. Nature, 2022, 603, 631-636.	13.7	31
9	Atomically dispersed Ru(III) on N-doped mesoporous carbon hollow spheres as catalysts for CO2 hydrogenation to formate. Chemical Engineering Journal, 2022, 442, 136185.	6.6	17
10	Hierarchical porous single-wall carbon nanohorns with atomic-level designed single-atom Co sites toward oxygen reduction reaction. Nano Energy, 2022, 97, 107206.	8.2	17
11	Design of Co-NC as efficient electrocatalyst: The unique structure and active site for remarkable durability of proton exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 308, 121220.	10.8	26
12	<scp>Sandwichâ€ike</scp> Nafion composite membrane with ultrathin ceria barriers for durable fuel cells. International Journal of Energy Research, 2022, 46, 6457-6470.	2.2	7
13	Sacrificial Dopant to Enhance the Activity and Durability of Electrochemical N ₂ Reduction Catalysis. ACS Catalysis, 2022, 12, 5684-5697.	5.5	12
14	Synthesis of hollow structured PtNi/Pt core/shell and Pt-only nanoparticles via galvanic displacement and selective etching for efficient oxygen reduction reaction. Journal of Industrial and Engineering Chemistry, 2022, 111, 300-307.	2.9	14
15	Formation Mechanism of Carbon-Supported Hollow PtNi Nanoparticles via One-Step Preparations for Use in the Oxygen Reduction Reaction. Catalysts, 2022, 12, 513.	1.6	4
16	Tofu-derived heteroatom-doped carbon for oxygen reduction reaction in an anion exchange membrane–fuel cell. Energy Conversion and Management, 2022, 265, 115754.	4.4	9
17	Electrochemical determination of the degree of atomic surface roughness in Pt–Ni alloy nanocatalysts for oxygen reduction reaction. , 2021, 3, 375-383.		57
18	Regenerative Electrocatalytic Redox Cycle of Copper Sulfide for Sustainable NH ₃ Production under Ambient Conditions. ACS Catalysis, 2021, 11, 435-445.	5.5	43

#	Article	IF	CITATIONS
19	Electrochemically fabricated MoO ₃ –MoO ₂ @NiMo heterostructure catalyst with Pt-like activity for the pH-universal hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 3677-3684.	5.2	27
20	Reinforced Polymer Blend Membranes with Liposomeâ€Like Morphology for Polymer Electrolyte Membrane Fuel Cells Operating under Lowâ€Humidity Conditions. Advanced Engineering Materials, 2021, 23, 2001174.	1.6	4
21	Anion Constructor for Atomicâ€5cale Engineering of Antiperovskite Crystals for Electrochemical Reactions. Advanced Functional Materials, 2021, 31, 2009241.	7.8	4
22	Single-atom oxygen reduction reaction electrocatalysts of Fe, Si, and N co-doped carbon with 3D interconnected mesoporosity. Journal of Materials Chemistry A, 2021, 9, 4297-4309.	5.2	43
23	Polystyrene-Based Hydroxide-Ion-Conducting Ionomer: Binder Characteristics and Performance in Anion-Exchange Membrane Fuel Cells. Polymers, 2021, 13, 690.	2.0	14
24	Insight on the treatment of pig blood as biomass derived electrocatalyst precursor for high performance in the oxygen reduction reaction. Applied Surface Science, 2021, 545, 148940.	3.1	6
25	Poly(fluorenyl aryl piperidinium) membranes and ionomers for anion exchange membrane fuel cells. Nature Communications, 2021, 12, 2367.	5.8	193
26	Atomicâ€5cale Engineering: Anion Constructor for Atomicâ€5cale Engineering of Antiperovskite Crystals for Electrochemical Reactions (Adv. Funct. Mater. 16/2021). Advanced Functional Materials, 2021, 31, 2170112.	7.8	0
27	Highâ€dispersion <scp>Coâ€Feâ€NC</scp> electrocatalyst based on leafâ€shaped zeolite imidazole framework for oxygen–reduction reaction in acidic medium. International Journal of Energy Research, 2021, 45, 15534-15543.	2.2	8
28	High-Performance Fuel Cells with a Plasma-Etched Polymer Electrolyte Membrane with Microhole Arrays. ACS Sustainable Chemistry and Engineering, 2021, 9, 5884-5894.	3.2	13
29	Hydrogen-Mediated Thin Pt Layer Formation on Ni ₃ N Nanoparticles for the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 24624-24633.	4.0	3
30	Structural Evolution of Atomically Dispersed Fe Species in Fe–N/C Catalysts Probed by X-ray Absorption and ⁵⁷ Fe MA¶ssbauer Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 11928-11938.	1.5	9
31	Enhanced thermoelectric performance of Mo nanoparticle decorated n-type Bi2Te2.7Se0.3 powder composites. Applied Surface Science, 2021, 548, 149200.	3.1	8
32	Atomic-Scale Engineered Fe Single-Atom Electrocatalyst Based on Waste Pig Blood for High-Performance AEMFCs. ACS Sustainable Chemistry and Engineering, 2021, 9, 7863-7872.	3.2	17
33	Strategic design for promoting water behavior via ensemble of thermo-responsive polymer functionalized catalysts and reservoir carbon in anion exchange membrane fuel cells. Journal of Power Sources, 2021, 494, 229738.	4.0	9
34	Bimetallic ZIFs derived nitrogen-doped hollow carbon with carbon nanotube bridges as a superior oxygen reduction reaction electrocatalyst. Journal of Industrial and Engineering Chemistry, 2021, 97, 466-475.	2.9	19
35	Capping agentâ€free synthesis of surface engineered Pt nanocube for direct ammonia fuel cell. International Journal of Energy Research, 2021, 45, 18281-18291.	2.2	7
36	Flash Bottomâ€Up Arc Synthesis of Nanocarbons as a Universal Route for Fabricating Singleâ€Atom Electrocatalysts. Small Methods, 2021, 5, 2100239.	4.6	6

#	Article	IF	CITATIONS
37	Monitoring electrochemical methanol oxidation and CO coverage using Pt deposited SPR sensor platform. International Journal of Energy Research, 2021, 45, 19535.	2.2	2
38	Tailoring of Pt Island RuO ₂ /C Catalysts by Galvanic Replacement to Achieve Superior Hydrogen Oxidation Reaction and CO Poisoning Resistance. ACS Applied Energy Materials, 2021, 4, 8098-8107.	2.5	6
39	Elevated surface plasmon resonance sensing sensitivity of Au-covered silica sphere monolayer prepared by Langmuir–Blodgett coating. Journal of Industrial and Engineering Chemistry, 2021, 99, 179-186.	2.9	5
40	Flash Bottomâ€Up Arc Synthesis of Nanocarbons as a Universal Route for Fabricating Singleâ€Atom Electrocatalysts (Small Methods 8/2021). Small Methods, 2021, 5, 2170037.	4.6	0
41	Feasibility of a Spherical Hollow Carbon Framework as a Stable Host Material for Reversible Metallic Li Storage. ACS Applied Materials & Interfaces, 2021, 13, 42732-42740.	4.0	5
42	Waste pig blood-derived 2D Fe single-atom porous carbon as an efficient electrocatalyst for zinc–air batteries and AEMFCs. Applied Surface Science, 2021, 563, 150208.	3.1	25
43	Polymer electrolyte membrane unitized regenerative fuel cells: Operational considerations for achieving high round trip efficiency at low catalyst loading. Applied Catalysis B: Environmental, 2021, 297, 120458.	10.8	14
44	Emerging carbon shell-encapsulated metal nanocatalysts for fuel cells and water electrolysis. Nanoscale, 2021, 13, 15116-15141.	2.8	46
45	A target-customized carbon shell structure of carbon-encapsulated metal nanoparticles for fuel cell applications. Journal of Materials Chemistry A, 2021, 9, 24480-24487.	5.2	18
46	Plasma-induced alloying as a green technology for synthesizing ternary nanoparticles with an early transition metal. Nano Today, 2021, 41, 101316.	6.2	11
47	Atomic Rearrangement in Core–Shell Catalysts Induced by Electrochemical Activation for Favorable Oxygen Reduction in Acid Electrolytes. ACS Catalysis, 2021, 11, 15098-15109.	5.5	9
48	Hollow-sphere Co-NC synthesis by incorporation of ultrasonic spray pyrolysis and pseudomorphic replication and its enhanced activity toward oxygen reduction reaction. Applied Catalysis B: Environmental, 2020, 260, 118192.	10.8	52
49	Dual exchange membrane fuel cell with sequentially aligned cation and anion exchange membranes for non-humidified operation. Journal of Membrane Science, 2020, 596, 117745.	4.1	8
50	Defect-controlled Fe-N-doped carbon nanofiber by ball-milling for oxygen reduction reaction. Korean Journal of Chemical Engineering, 2020, 37, 938-945.	1.2	8
51	Activity–Stability Relationship in Au@Pt Nanoparticles for Electrocatalysis. ACS Energy Letters, 2020, 5, 2827-2834.	8.8	49
52	Electron-deficient titanium single-atom electrocatalyst for stable and efficient hydrogen production. Nano Energy, 2020, 78, 105151.	8.2	16
53	Prism patterned TiO2 layers/Nafion® composite membrane for elevated temperature/low relative humidity fuel cell operation. Journal of Industrial and Engineering Chemistry, 2020, 90, 327-332.	2.9	11
54	Direct Synthesis of Intermetallic Platinum–Alloy Nanoparticles Highly Loaded on Carbon Supports for Efficient Electrocatalysis. Journal of the American Chemical Society, 2020, 142, 14190-14200.	6.6	160

#	Article	IF	CITATIONS
55	Fe-based non-noble metal catalysts with dual active sites of nanosized metal carbide and single-atomic species for oxygen reduction reaction. Journal of Materials Chemistry A, 2020, 8, 22379-22388.	5.2	30
56	Tunable Synthesis of N,C-Codoped Ti ³⁺ -Enriched Titanium Oxide Support for Highly Durable PEMFC Cathode. ACS Catalysis, 2020, 10, 12080-12090.	5.5	39
57	Monolayer Quantum-Dot Based Light-Sensor by a Photo-Electrochemical Mechanism. Micromachines, 2020, 11, 817.	1.4	0
58	Surface engineering of Pd-based nanoparticles by gas treatment for oxygen reduction reaction. Korean Journal of Chemical Engineering, 2020, 37, 1360-1364.	1.2	2
59	Effect of N-cyclic cationic groups in poly(phenylene oxide)-based catalyst ionomer membranes for anion exchange membrane fuel cells. Journal of Membrane Science, 2020, 608, 118183.	4.1	32
60	Bimodal-porous hollow MgO sphere embedded mixed matrix membranes for CO2 capture. Separation and Purification Technology, 2020, 250, 117065.	3.9	22
61	Highly Active and Durable Ordered Intermetallic PdFe Electrocatalyst for Formic Acid Electrooxidation Reaction. ACS Applied Energy Materials, 2020, 3, 4226-4237.	2.5	31
62	Formation Mechanism and Gram-Scale Production of PtNi Hollow Nanoparticles for Oxygen Electrocatalysis through In Situ Galvanic Displacement Reaction. ACS Applied Materials & Interfaces, 2020, 12, 16286-16297.	4.0	15
63	Effect of the fabrication condition of membrane electrode assemblies with carbon-supported ordered PtCo electrocatalyst on the durability of polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45, 32834-32843.	3.8	2
64	Spirobiindane-Based Poly(arylene ether sulfone) Ionomers for Alkaline Anion Exchange Membrane Fuel Cells. Macromolecular Research, 2020, 28, 275-281.	1.0	8
65	Low-loading IrO2 supported on Pt for catalysis of PEM water electrolysis and regenerative fuel cells. Applied Catalysis B: Environmental, 2020, 272, 118955.	10.8	43
66	New PtMg Alloy with Durable Electrocatalytic Performance for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cell. ACS Energy Letters, 2020, 5, 1601-1609.	8.8	37
67	Hydrocarbon-based electrode ionomer for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45, 32856-32864.	3.8	18
68	Additional Carbon/Nafion Covering Layer on Electrode in Polymer Electrolyte Membrane Fuel Cell for Effective Operation at Low Relative Humidity Condition. ECS Meeting Abstracts, 2020, MA2020-01, 1665-1665.	0.0	0
69	Boosting Fuel Cell Durability under Shut-Down/Start-Up Conditions Using a Hydrogen Oxidation-Selective Metal–Carbon Hybrid Core–Shell Catalyst. ACS Applied Materials & Interfaces, 2019, 11, 27735-27742.	4.0	35
70	Tuning the surface structure of PtCo nanocatalysts with high activity and stability toward oxygen reduction. Journal of Industrial and Engineering Chemistry, 2019, 78, 448-454.	2.9	19
71	Investigation of the effect of carbon-covering layer on catalyst layer in polymer electrolyte membrane fuel cell in low relative humidity condition. Journal of Power Sources, 2019, 436, 226823.	4.0	14
72	Bioâ€Derived Co ₂ P Nanoparticles Supported on Nitrogenâ€Doped Carbon as Promising Oxygen Reduction Reaction Electrocatalyst for Anion Exchange Membrane Fuel Cells. Small, 2019, 15, e1902090.	5.2	31

#	Article	IF	CITATIONS
73	Preparation of porous PtAuCu@Pt core-shell catalyst for application to oxygen reduction. Journal of Industrial and Engineering Chemistry, 2019, 79, 210-216.	2.9	15
74	Rational Generation of Feâ^'N x Active Sites in Feâ^'Nâ^'C Electrocatalysts Facilitated by Feâ^'N Coordinated Precursors for the Oxygen Reduction Reaction. ChemCatChem, 2019, 11, 5982-5988.	1.8	19
75	Membrane/Electrode Interface Design for Effective Water Management in Alkaline Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 34805-34811.	4.0	29
76	Enhanced Water Management of Three-Dimensional Graphene-Ni Foam with Patterned Wettability in a Polymer Electrolyte Membrane Fuel Cell. ACS Sustainable Chemistry and Engineering, 2019, 7, 15487-15494.	3.2	26
77	Development of robust Pt shell through organic hydride donor in PtCo@Pt core-shell electrocatalysts for highly stable proton exchange membrane fuel cells. Journal of Catalysis, 2019, 379, 112-120.	3.1	41
78	A new etching process for zinc oxide with etching rate and crystal plane control: experiment, calculation, and membrane application. Nanoscale, 2019, 11, 12337-12346.	2.8	3
79	Polyethylenimineâ€assisted Synthesis of Au Nanoparticles for Efficient Syngas Production. Electroanalysis, 2019, 31, 1401-1408.	1.5	12
80	Bending-durable membrane-electrode assembly using metal nanowires for bendable polymer electrolyte membrane fuel cell. Energy, 2019, 172, 874-880.	4.5	14
81	Pt-Sputtered Ti Mesh Electrode for Polymer Electrolyte Membrane Fuel Cells. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 271-279.	2.7	11
82	Work function-tailored graphene <i>via</i> transition metal encapsulation as a highly active and durable catalyst for the oxygen reduction reaction. Energy and Environmental Science, 2019, 12, 2200-2211.	15.6	141
83	A study on electrode fabrication and operation variables affecting the performance of anion exchange membrane water electrolysis. Journal of Industrial and Engineering Chemistry, 2019, 76, 410-418.	2.9	85
84	Synthesis and growth mechanism of carbon-supported nanoparticle catalysts by physical vapor deposition onto a liquid medium substrate. Applied Surface Science, 2019, 471, 1083-1087.	3.1	5
85	Zeolitic imidazolate framework ZIF-8 films by ZnO to ZIF-8 conversion and their usage as seed layers for propylene-selective ZIF-8 membranes. Journal of Industrial and Engineering Chemistry, 2019, 72, 374-379.	2.9	36
86	Highly active bimetallic CuFe–N–C electrocatalysts for oxygen reduction reaction in alkaline media. Journal of Industrial and Engineering Chemistry, 2019, 71, 234-241.	2.9	12
87	Effect of Catalyst Pore Size on the Performance of Nonâ€Precious Fe/N/Câ€Based Electrocatalysts for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. ChemElectroChem, 2018, 5, 1805-1810.	1.7	19
88	Computational and experimental design of active and durable Ir-based nanoalloy for electrochemical oxygen reduction reaction. Applied Catalysis B: Environmental, 2018, 235, 177-185.	10.8	18
89	Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content. Journal of Power Sources, 2018, 382, 22-29.	4.0	96
90	Hollow PdCu2@Pt core@shell nanoparticles with ordered intermetallic cores as efficient and durable oxygen reduction reaction electrocatalysts. Applied Catalysis B: Environmental, 2018, 225, 84-90.	10.8	48

#	Article	IF	CITATIONS
91	Toward High-Performance Pt-Based Nanocatalysts for Oxygen Reduction Reaction through Organic–Inorganic Hybrid Concepts. Chemistry of Materials, 2018, 30, 2-24.	3.2	65
92	Gram-scale synthesis of highly active and durable octahedral PtNi nanoparticle catalysts for proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 2018, 225, 530-537.	10.8	63
93	Electrodeposited IrO2/Ti electrodes as durable and cost-effective anodes in high-temperature polymer-membrane-electrolyte water electrolyzers. Applied Catalysis B: Environmental, 2018, 226, 289-294.	10.8	76
94	Tailoring the porosity of MOF-derived N-doped carbon electrocatalysts for highly efficient solar energy conversion. Journal of Materials Chemistry A, 2018, 6, 20170-20183.	5.2	25
95	Application of spirobiindane-based microporous poly(ether sulfone)s as polymeric binder on solid alkaline exchange membrane fuel cells. Journal of Membrane Science, 2018, 568, 67-75.	4.1	34
96	Fuel Cells: Highly Efficient Oxygen Reduction Reaction Activity of Graphitic Tube Encapsulating Nitrided Co <i>_x</i> Fe <i>_y</i> Alloy (Adv. Energy Mater. 25/2018). Advanced Energy Materials, 2018, 8, 1870115.	10.2	5
97	Highly Efficient Oxygen Reduction Reaction Activity of Graphitic Tube Encapsulating Nitrided Co <i>_x</i> Fe <i>_y</i> Alloy. Advanced Energy Materials, 2018, 8, 1801002.	10.2	117
98	Electrochemical impedance analysis with transmission line model for accelerated carbon corrosion in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2018, 43, 15457-15465.	3.8	23
99	Enhanced CO2 reduction activity of polyethylene glycol-modified Au nanoparticles prepared via liquid medium sputtering. Applied Catalysis B: Environmental, 2018, 237, 673-680.	10.8	35
100	Facile Spray Pyrolysis Synthesis of Various Metal-Doped MoO2 Microspheres for Catalytic Partial Oxidation of n-Dodecane. Catalysis Letters, 2018, 148, 2510-2515.	1.4	1
101	Effect of the spirobiindane group in sulfonated poly(arylene ether sulfone) copolymer as electrode binder for polymer electrolyte membrane fuel cells. Journal of Industrial and Engineering Chemistry, 2017, 47, 315-322.	2.9	14
102	Repetitive bending test of membrane electrode assembly for bendable polymer electrolyte membrane fuel cell. Journal of Industrial and Engineering Chemistry, 2017, 47, 323-328.	2.9	14
103	Urchin-Shaped Hollow Iron-Nitrogen-Doped Carbon Microspheres as High-Performance Electrocatalysts for Oxygen Reduction. Journal of the Electrochemical Society, 2017, 164, F224-F228.	1.3	11
104	Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis. Journal of Power Sources, 2017, 347, 283-290.	4.0	54
105	The role of pre-defined microporosity in catalytic site formation for the oxygen reduction reaction in ir iron- and nitrogen-doped carbon materials. Journal of Materials Chemistry A, 2017, 5, 4199-4206.	5.2	30
106	Self-healing Pd3Au@Pt/C core-shell electrocatalysts with substantially enhanced activity and durability towards oxygen reduction. Applied Catalysis B: Environmental, 2017, 206, 666-674.	10.8	14
107	Preparation and characterization of Cu–N–C electrocatalysts for oxygen reduction reaction in alkaline anion exchange membrane fuel cells. Journal of Industrial and Engineering Chemistry, 2017, 52, 35-41.	2.9	18
108	Effect of assembly pressure on the performance of a bendable polymer electrolyte fuel cell based on a silver nanowire current collector. Energy, 2017, 134, 412-419.	4.5	32

#	Article	IF	CITATIONS
109	A rollable ultra-light polymer electrolyte membrane fuel cell. NPG Asia Materials, 2017, 9, e384-e384.	3.8	34
110	Effect of Catalyst Layer Ionomer Content on Performance of Intermediate Temperature Proton Exchange Membrane Fuel Cells (IT-PEMFCs) under Reduced Humidity Conditions. Electrochimica Acta, 2017, 224, 228-234.	2.6	30
111	Anomalous in situ Activation of Carbon-Supported Ni2P Nanoparticles for Oxygen Evolving Electrocatalysis in Alkaline Media. Scientific Reports, 2017, 7, 8236.	1.6	21
112	Rhodium–Tin Binary Nanoparticle—A Strategy to Develop an Alternative Electrocatalyst for Oxygen Reduction. ACS Catalysis, 2017, 7, 5796-5801.	5.5	25
113	Transition metal alloying effect on the phosphoric acid adsorption strength of Pt nanoparticles: an experimental and density functional theory study. Scientific Reports, 2017, 7, 7186.	1.6	17
114	Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells. Journal of Power Sources, 2017, 363, 365-374.	4.0	49
115	Synthesis of high molecular weight polybenzimidazole using a highly pure monomer under mild conditions. Polymer International, 2017, 66, 1812-1818.	1.6	12
116	Vanadium nitride nanofiber membrane as a highly stable support for Pt-catalyzed oxygen reduction reaction. Journal of Industrial and Engineering Chemistry, 2017, 46, 298-303.	2.9	25
117	Facile Synthesis of M-MOF-74 (M=Co, Ni, Zn) and its Application as an ElectroCatalyst for Electrochemical CO2 Conversion and H2 Production. Journal of Electrochemical Science and Technology, 2017, 8, 61-68.	0.9	43
118	A Review on Membranes and Catalysts for Anion Exchange Membrane Water Electrolysis Single Cells. Journal of Electrochemical Science and Technology, 2017, 8, 183-196.	0.9	45
119	A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis. Journal of Electrochemical Science and Technology, 2017, 8, 265-273.	0.9	19
120	Facile Synthesis of M-MOF-74 (M=Co, Ni, Zn) and its Application as an ElectroCatalyst for Electrochemical CO ₂ Conversion and H ₂ Production. Journal of Electrochemical Science and Technology, 2017, 8, 61-68.	0.9	25
121	Spectrophotometric Analysis of Phosphoric Acid Leakage in High-Temperature Phosphoric Acid-Doped Polybenzimidazole Membrane Fuel Cell Application. Journal of Sensors, 2016, 2016, 1-8.	0.6	6
122	PEMFC Performance with Metal Bipolar Plates Depending on the Channel Dimension. MATEC Web of Conferences, 2016, 51, 03002.	0.1	0
123	Characterizing Coverage of Phosphoric Acid on Carbon-Supported Platinum Nanoparticles Using In Situ Extended X-Ray Absorption Fine Structure Spectroscopy and Cyclic Voltammetry. Journal of the Electrochemical Society, 2016, 163, F210-F215.	1.3	12
124	Development of La0.8Sr0.2MnO3+l̂´ electrocatalysts by Pechini's methods as cathode electrocatalysts in alkaline anion exchange membrane fuel cells. Solid State Ionics, 2016, 290, 124-129.	1.3	2
125	Polarization characteristics of a low catalyst loading PEM water electrolyzer operating at elevated temperature. Journal of Power Sources, 2016, 309, 127-134.	4.0	68
126	Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell. Journal of Power Sources, 2016, 317, 19-24.	4.0	37

#	Article	IF	CITATIONS
127	Base tolerant polybenzimidazolium hydroxide membranes for solid alkaline-exchange membrane fuel cells. Journal of Membrane Science, 2016, 514, 398-406.	4.1	11
128	Facile preparation of a long-term durable nano- and micro-structured polymer blend membrane for a proton exchange membrane fuel cell. RSC Advances, 2016, 6, 46516-46522.	1.7	13
129	Experimental Investigation of Operating Parameters in Power Generation by Lab cale Reverse Electroâ€Dialysis (<scp>RED</scp>). Bulletin of the Korean Chemical Society, 2016, 37, 1010-1019.	1.0	11
130	Electrochemical Conversion of Carbon Dioxide to Formic Acid on Sn–Zn Alloy Catalysts Prepared by Electrodeposition. Journal of Nanoscience and Nanotechnology, 2016, 16, 10470-10474.	0.9	10
131	Facile synthesis of platinum alloy electrocatalyst via aluminum reducing agent and the effect of post heat treatment for oxygen reduction reaction. International Journal of Hydrogen Energy, 2016, 41, 22952-22962.	3.8	6
132	Binaphthyl-based molecular barrier materials for phosphoric acid poisoning in high-temperature proton exchange membrane fuel cells. RSC Advances, 2016, 6, 60749-60755.	1.7	12
133	High-performance PtCux@Pt core-shell nanoparticles decorated with nanoporous Pt surfaces for oxygen reduction reaction. Applied Catalysis B: Environmental, 2016, 196, 199-206.	10.8	49
134	NH3 adsorption on PtM (Fe, Co, Ni) surfaces: Cooperating effects of charge transfer, magnetic ordering and lattice strain. Chemical Physics Letters, 2016, 648, 166-169.	1.2	17
135	Rationalization of electrocatalysis of nickel phosphide nanowires for efficient hydrogen production. Nano Energy, 2016, 26, 496-503.	8.2	61
136	Organic-inorganic hybrid PtCo nanoparticle with high electrocatalytic activity and durability for oxygen reduction. NPG Asia Materials, 2016, 8, e237-e237.	3.8	57
137	Development of porous Pt/IrO2/carbon paper electrocatalysts with enhanced mass transport as oxygen electrodes in unitized regenerative fuel cells. Electrochemistry Communications, 2016, 64, 14-17.	2.3	34
138	A simple synthesis of urchin-like Pt–Ni bimetallic nanostructures as enhanced electrocatalysts for the oxygen reduction reaction. Chemical Communications, 2016, 52, 597-600.	2.2	47
139	Anion exchange membrane water electrolyzer with an ultra-low loading of Pt-decorated Ni electrocatalyst. Applied Catalysis B: Environmental, 2016, 180, 674-679.	10.8	47
140	Synthesis and Properties of Nitrogen and Iodine Co-Functionalized Graphene Oxide and Its Electrochemical Applications. Science of Advanced Materials, 2016, 8, 28-33.	0.1	3
141	Recent Progress in Nanoparticle Synthesis via Liquid Medium Sputtering and its Applications. Journal of Electrochemical Science and Technology, 2016, 7, 13-26.	0.9	2
142	Carbon-Supported Ordered Pt-Ti Alloy Nanoparticles as Durable Oxygen Reduction Reaction Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells. Journal of Electrochemical Science and Technology, 2016, 7, 269-276.	0.9	1
143	Recent Progress in Nanoparticle Synthesis via Liquid Medium Sputtering and its Applications. Journal of Electrochemical Science and Technology, 2016, 7, 13-26.	0.9	2
144	Carbon-Supported Ordered Pt-Ti Alloy Nanoparticles as Durable Oxygen Reduction Reaction Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells. Journal of Electrochemical Science and Technology, 2016, 7, 269-276.	0.9	4

#	Article	IF	CITATIONS
145	Green synthesis of carbon-supported nanoparticle catalysts by physical vapor deposition on soluble powder substrates. Scientific Reports, 2015, 5, 14245.	1.6	11
146	In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-oxo/hydroxo Molecular Units. ACS Catalysis, 2015, 5, 4066-4074.	5.5	420
147	Development of electrodeposited IrO2 electrodes as anodes in polymer electrolyte membrane water electrolysis. Applied Catalysis B: Environmental, 2015, 179, 285-291.	10.8	118
148	Epitaxial Growth of a Single-Crystal Hybridized Boron Nitride and Graphene Layer on a Wide-Band Gap Semiconductor. Journal of the American Chemical Society, 2015, 137, 6897-6905.	6.6	55
149	Enhanced Methanol Tolerance of Highly Pd rich Pd-Pt Cathode Electrocatalysts in Direct Methanol Fuel Cells. Electrochimica Acta, 2015, 164, 235-242.	2.6	49
150	Design of an Advanced Membrane Electrode Assembly Employing a Double-Layered Cathode for a PEM Fuel Cell. ACS Applied Materials & Interfaces, 2015, 7, 27581-27585.	4.0	30
151	Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 15478-15485.	6.6	517
152	Structure dependent active sites of Ni _x S _y as electrocatalysts for hydrogen evolution reaction. Nanoscale, 2015, 7, 5157-5163.	2.8	121
153	Third-body effects of native surfactants on Pt nanoparticle electrocatalysts in proton exchange fuel cells. Chemical Communications, 2015, 51, 2968-2971.	2.2	34
154	Cobalt-carbon nanofibers as an efficient support-free catalyst for oxygen reduction reaction with a systematic study of active site formation. Journal of Materials Chemistry A, 2015, 3, 14284-14290.	5.2	77
155	Heterogeneous rhodium–tin nanoparticles: highly active and durable electrocatalysts for the oxidation of ethanol. Journal of Materials Chemistry A, 2015, 3, 17130-17134.	5.2	15
156	Synthesis of high molecular weight sulfonated poly(arylene ether sulfone) copolymer without azeotropic reaction. Solid State Ionics, 2015, 275, 92-96.	1.3	6
157	Understanding Interface between Electrode and Electrolyte: Organic/Inorganic Hybrid Design for Fast Ion Conductivity. Journal of Physical Chemistry C, 2015, 119, 9169-9176.	1.5	10
158	The nature of active sites of Ni2P electrocatalyst for hydrogen evolution reaction. Journal of Catalysis, 2015, 326, 92-99.	3.1	107
159	Effect of oleylamine concentration on the structure and oxygen reduction activity of carbon-supported surface-Pt-enriched Pt 3 Au electrocatalysts. Journal of Power Sources, 2015, 290, 130-135.	4.0	6
160	A highly active and durable Co–N–C electrocatalyst synthesized using exfoliated graphitic carbon nitride nanosheets. Nanoscale, 2015, 7, 10334-10339.	2.8	61
161	Morphology-controlled synthesis of ternary Pt–Pd–Cu alloy nanoparticles for efficient electrocatalytic oxygen reduction reactions. Applied Catalysis B: Environmental, 2015, 174-175, 526-532.	10.8	42
162	Colorimetric determination of phosphoric acid leakage for phosphoric acid-doped polybenzimidazole membrane fuel cell applications. Journal of Power Sources, 2015, 299, 480-484.	4.0	7

#	Article	IF	CITATIONS
163	Site preference of NH ₃ -adsorption on Co, Pt and CoPt surfaces: the role of charge transfer, magnetism and strain. Physical Chemistry Chemical Physics, 2015, 17, 9335-9340.	1.3	9
164	Highly efficient and durable TiN nanofiber electrocatalyst supports. Nanoscale, 2015, 7, 18429-18434.	2.8	28
165	Janus Pt surfaces derivatized with zwitterionic molecules for oxygen reduction reactions in alkaline and acid electrolytes. Nano Energy, 2015, 17, 152-159.	8.2	19
166	Nanosized Pt–La alloy electrocatalysts with high activity and stability for the oxygen reduction reaction. Surface Science, 2015, 631, 272-277.	0.8	10
167	Novel sulfonated poly(arylene ether sulfone) containing hydroxyl groups for enhanced proton exchange membrane properties. Polymer Chemistry, 2015, 6, 233-239.	1.9	25
168	Effect of membrane electrode assembly fabrication method on the single cell performances of polybenzimidazole-based high temperature polymer electrolyte membrane fuel cells. Macromolecular Research, 2014, 22, 1214-1220.	1.0	11
169	Poly(arylene ether sulfone) with tetra(quaternary ammonium) moiety in the polymer repeating unit for application in solid alkaline exchange membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39, 21223-21230.	3.8	27
170	Effects of anode flooding on the performance degradation of polymer electrolyte membrane fuel cells. Journal of Power Sources, 2014, 266, 332-340.	4.0	84
171	Analysis of the spatially distributed performance degradation of a polymer electrolyte membrane fuel cell stack. International Journal of Hydrogen Energy, 2014, 39, 16548-16555.	3.8	2
172	One-step synthesis of carbon-supported Pd@Pt/C core–shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability. Nanoscale, 2014, 6, 4038.	2.8	35
173	Edge-exposed MoS ₂ nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale, 2014, 6, 2131-2136.	2.8	260
174	Development of a membrane electrode assembly for alkaline water electrolysis by direct electrodeposition of nickel on carbon papers. Applied Catalysis B: Environmental, 2014, 154-155, 197-205.	10.8	77
175	Synthesis and characterization of fluoreneâ€based polybenzimidazole copolymer for gas separation. Journal of Applied Polymer Science, 2014, 131, .	1.3	11
176	P-modified and carbon shell coated Co nanoparticles for efficient alkaline oxygen reduction catalysis. Chemical Communications, 2014, 50, 15940-15943.	2.2	23
177	Facile synthesis of carbon supported metal nanoparticles via sputtering onto a liquid substrate and their electrochemical application. RSC Advances, 2014, 4, 38575.	1.7	22
178	Effect of the type of Pt precursor on Pt–Ni nanostructures for electro-oxidation of ammonia. Materials Chemistry and Physics, 2014, 147, 722-727.	2.0	6
179	Nitrogen-doped and simultaneously reduced graphene oxide with superior dispersion as electrocatalysts for oxygen reduction reaction. Materials Research Bulletin, 2014, 59, 145-149.	2.7	8
180	Origin of the Enhanced Electrocatalysis for Thermally Controlled Nanostructure of Bimetallic Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 9939-9945.	1.5	25

#	Article	IF	CITATIONS
181	Effect of surface composition of Pt–Fe nanoparticles for oxygen reduction reactions. International Journal of Hydrogen Energy, 2014, 39, 14751-14759.	3.8	30
182	Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today, 2014, 9, 433-456.	6.2	267
183	Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid. International Journal of Hydrogen Energy, 2014, 39, 16506-16512.	3.8	78
184	Graphene-oxide-intercalated layered manganese oxides as an efficient oxygen reduction reaction cation catalyst in alkaline media. Electrochemistry Communications, 2014, 41, 35-38.	2.3	21
185	Surface-Rearranged Pd ₃ Au/C Nanocatalysts by Using CO-Induced Segregation for Formic Acid Oxidation Reactions. ACS Catalysis, 2014, 4, 2402-2408.	5.5	55
186	Highly active and CO2 tolerant Ir nanocatalysts for H2/CO2 separation in electrochemical hydrogen pumps. Applied Catalysis B: Environmental, 2014, 158-159, 348-354.	10.8	15
187	Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell. Scientific Reports, 2014, 4, 7450.	1.6	77
188	Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells. Bulletin of the Korean Chemical Society, 2014, 35, 3475-3481.	1.0	7
189	Effects of platinum loading on the performance of proton exchange membrane fuel cells with high ionomer content in catalyst layers. International Journal of Hydrogen Energy, 2013, 38, 9826-9834.	3.8	27
190	Pd nanocrystals on WC as a synergistic electrocatalyst for hydrogen oxidation reactions. Physical Chemistry Chemical Physics, 2013, 15, 2125.	1.3	13
191	Chemical tuning of electrochemical properties of Pt-skin surfaces for highly active oxygen reduction reactions. Physical Chemistry Chemical Physics, 2013, 15, 17079.	1.3	26
192	Electrochemically fabricated NiCu alloy catalysts for hydrogen production in alkaline water electrolysis. International Journal of Hydrogen Energy, 2013, 38, 13493-13501.	3.8	78
193	Effect of morphology of electrodeposited Ni catalysts on the behavior of bubbles generated during the oxygen evolution reaction in alkaline water electrolysis. Chemical Communications, 2013, 49, 9323.	2.2	146
194	Effect of Se modification on RuSey/C electrocatalyst for oxygen reduction with phosphoric acid. Electrochemistry Communications, 2013, 27, 46-49.	2.3	8
195	Electrochemical determination of the surface composition of Pd–Pt core–shell nanoparticles. Electrochemistry Communications, 2013, 28, 114-117.	2.3	6
196	Characterizations of polybenzimidazole based electrochemical hydrogen pumps with various Pt loadings for H2/CO2 gas separation. International Journal of Hydrogen Energy, 2013, 38, 14816-14823.	3.8	28
197	Supported Core@Shell Electrocatalysts for Fuel Cells: Close Encounter with Reality. Scientific Reports, 2013, 3, 1309.	1.6	59
198	Reversible Surface Segregation of Pt in a Pt ₃ Au/C Catalyst and Its Effect on the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2013, 117, 9164-9170.	1.5	37

#	Article	IF	CITATIONS
199	Synthesis and characterization of poly(benzimidazolium) membranes for anion exchange membrane fuel cells. Polymer Bulletin, 2013, 70, 2619-2631.	1.7	25
200	Enhancement of oxygen reduction reaction on PtAu nanoparticles via CO induced surface Pt enrichment. Applied Catalysis B: Environmental, 2013, 129, 375-381.	10.8	43
201	The activation process through a bimodal transmittance state for improving electrochromic performance of nickel oxide thin film. Solar Energy Materials and Solar Cells, 2013, 108, 22-26.	3.0	29
202	Effect of Particle Size of PtRu Nanoparticles Embedded in WO3 on Electrocatalysis. Journal of Nanoscience and Nanotechnology, 2013, 13, 3591-3596.	0.9	0
203	Hydrogen Oxidation Reaction Activity of Sub-Monolayer Pt-Shell/Pd-Core Nanoparticles. Journal of the Electrochemical Society, 2013, 160, H62-H66.	1.3	2
204	Oxygen Reduction Reaction of Pt Supported on Y-Doped SrTiO3. Electrochemical and Solid-State Letters, 2012, 15, B61.	2.2	3
205	Facile preparation of carbon-supported PtNi hollow nanoparticles with high electrochemical performance. Journal of Materials Chemistry, 2012, 22, 8820.	6.7	63
206	Selective deposition of Pt onto supported metal clusters for fuel cell electrocatalysts. Nanoscale, 2012, 4, 6461.	2.8	16
207	Surface Structures and Electrochemical Activities of PtRu Overlayers on Ir Nanoparticles. ACS Catalysis, 2012, 2, 739-745.	5.5	9
208	The application of camphorsulfonic acid doped polyaniline films prepared on TCO-free glass for counter electrode of bifacial dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 245, 1-8.	2.0	29
209	Effects of Pt loading in the anode on the durability of a membrane–electrode assembly for polymer electrolyte membrane fuel cells during startup/shutdown cycling. International Journal of Hydrogen Energy, 2012, 37, 18455-18462.	3.8	35
210	Role of Electronic Perturbation in Stability and Activity of Pt-Based Alloy Nanocatalysts for Oxygen Reduction. Journal of the American Chemical Society, 2012, 134, 19508-19511.	6.6	219
211	Electrocatalytic Effects of Carbon Dissolution in Pd Nanoparticles. Langmuir, 2012, 28, 3664-3670.	1.6	17
212	Promoting effects of La for improved oxygen reduction activity and high stability of Pt on Pt–La alloy electrodes. Energy and Environmental Science, 2012, 5, 7521.	15.6	78
213	Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis. Journal of Materials Chemistry, 2012, 22, 15153.	6.7	159
214	Development of a galvanostatic analysis technique as an in-situ diagnostic tool for PEMFC single cells and stacks. International Journal of Hydrogen Energy, 2012, 37, 5891-5900.	3.8	40
215	Pt3Y electrocatalyst for oxygen reduction reaction in proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2012, 37, 9758-9765.	3.8	47
216	Stability characteristics of Pt1Ni1/C as cathode catalysts in membrane electrode assembly of polymer electrolyte membrane fuel cell. Electrochimica Acta, 2012, 59, 264-269.	2.6	21

#	Article	IF	CITATIONS
217	The improving electrochromic performance of nickel oxide film using aqueous N,N-dimethylaminoethanol solution. Solar Energy Materials and Solar Cells, 2012, 99, 31-37.	3.0	30
218	Stabilizer-mediated Synthesis of High Activity PtFe/C Nanocatalysts for Fuel Cell Application. Bulletin of the Korean Chemical Society, 2012, 33, 699-702.	1.0	3
219	Electrochemical Reduction of Carbon Dioxide Using a Proton Exchange Membrane. Journal of the Korean Electrochemical Society, 2012, 15, 216-221.	0.1	0
220	A compact BrFAFC (Bio-reformed Formic Acid Fuel Cell) converting formate to power. Chemical Communications, 2011, 47, 3972.	2.2	2
221	Enhanced stability and activity of Pt–Y alloy catalysts for electrocatalytic oxygen reduction. Chemical Communications, 2011, 47, 11414.	2.2	94
222	Surface Structures and Electrochemical Activities of Pt Overlayers on Ir Nanoparticles. Langmuir, 2011, 27, 3128-3137.	1.6	21
223	Ternary Ptâ^'Feâ^'Co Alloy Electrocatalysts Prepared by Electrodeposition: Elucidating the Roles of Fe and Co in the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2011, 115, 2483-2488.	1.5	83
224	Enhanced activity of Pt-based electrocatalysts for oxygen reduction via a selective Pt deposition process. Journal of Electroanalytical Chemistry, 2011, 662, 70-79.	1.9	21
225	Effect of the amount of reducing agent on surface structures, electrochemical activity and stability of PtRu catalysts. Electrochimica Acta, 2011, 56, 8688-8694.	2.6	5
226	Phosphate adsorption and its effect on oxygen reduction reaction for PtxCoy alloy and Aucore–Ptshell electrocatalysts. Electrochimica Acta, 2011, 56, 8802-8810.	2.6	30
227	Effects of stabilizers on the synthesis of Pt3Cox/C electrocatalysts for oxygen reduction. International Journal of Hydrogen Energy, 2011, 36, 12088-12095.	3.8	23
228	Electrocatalytic Properties of TiO2-Embedded Pt Nanoparticles in Oxidation of Methanol: Particle Size Effect and Proton Spillover Effect. Electrocatalysis, 2011, 2, 297-306.	1.5	27
229	Size-controlled synthesis of Pt nanoparticles and their electrochemical activities toward oxygen reduction. International Journal of Hydrogen Energy, 2011, 36, 706-712.	3.8	36
230	Performance and stability characteristics of MEAs with carbon-supported Pt and Pt1Ni1 nanoparticles as cathode catalysts in PEM fuel cell. International Journal of Hydrogen Energy, 2011, 36, 4394-4399.	3.8	22
231	Effect of PtRu alloying degree on electrocatalytic activities and stabilities. Applied Catalysis B: Environmental, 2011, 102, 334-342.	10.8	40
232	Particle size effects of PtRu nanoparticles embedded in TiO2 on methanol electrooxidation. Electrochimica Acta, 2010, 55, 7939-7944.	2.6	23
233	Tungsten oxide bilayer electrodes for photoelectrochemical cells. Journal of Power Sources, 2010, 195, 5422-5425.	4.0	11
234	Modified polyol synthesis of PtRu/C for high metal loading and effect of post-treatment. Journal of Power Sources, 2010, 195, 1031-1037.	4.0	24

#	Article	lF	CITATIONS
235	Enhancement of polymer electrolyte membrane fuel cell performance by boiling a membrane electrode assembly in sulfuric acid solution. Journal of Power Sources, 2010, 195, 5952-5956.	4.0	6
236	High contrast ratio and fast switching polymeric electrochromic films based on water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles. Electrochemistry Communications, 2010, 12, 164-167.	2.3	69
237	Effect of de-alloying of Pt–Ni bimetallic nanoparticles on the oxygen reduction reaction. Electrochemistry Communications, 2010, 12, 1796-1799.	2.3	21
238	Electrocatalytic properties of Pd clusters on Au nanoparticles in formic acid electro-oxidation. Electrochimica Acta, 2010, 55, 4339-4345.	2.6	39
239	Enhanced Electrochromic Properties of Ir–Ta Oxide Grown Using a Cosputtering System. Journal of the Electrochemical Society, 2010, 157, J256.	1.3	7
240	Multilayered Pt/Ru nanorods with controllable bimetallic sites as methanol oxidation catalysts. Physical Chemistry Chemical Physics, 2010, 12, 15240.	1.3	33
241	Effect of Surface Segregation on the Methanol Oxidation Reaction in Carbon-Supported Ptâ^'Ru Alloy Nanoparticles. Langmuir, 2010, 26, 9123-9129.	1.6	44
242	Effects of particle size on surface electronic and electrocatalytic properties of Pt/TiO ₂ nanocatalysts. Chemical Communications, 2010, 46, 794-796.	2.2	77
243	Characteristics and performance of membrane electrode assemblies with operating conditions in polymer electrolyte membrane fuel cell. Electrochimica Acta, 2010, 56, 717-721.	2.6	7
244	Facile synthesis of highly active and stable Pt–Ir/C electrocatalysts for oxygen reduction and liquid fuel oxidation reaction. Chemical Communications, 2010, 46, 8401.	2.2	53
245	Fabrication and Characterization of High-activity Pt/C Electrocatalysts for Oxygen Reduction. Bulletin of the Korean Chemical Society, 2010, 31, 1577-1582.	1.0	11
246	High electrochromic performance of co-sputtered vanadium–titanium oxide as a counter electrode. Solar Energy Materials and Solar Cells, 2009, 93, 2069-2074.	3.0	17
247	Influence of Oxide on the Oxygen Reduction Reaction of Carbon-Supported Ptâ^'Ni Alloy Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 19732-19739.	1.5	72
248	High utilization of Pt nanocatalysts fabricated using a high-pressure sputtering technique. Journal of Power Sources, 2008, 178, 547-553.	4.0	23
249	Promotional Effect of Palladium on the Hydrogen Oxidation Reaction at a PtPd Alloy Electrode. Angewandte Chemie - International Edition, 2008, 47, 9307-9310.	7.2	51
250	Electrochromic properties of one-dimensional tungsten oxide nanobundles. Solar Energy Materials and Solar Cells, 2008, 92, 179-183.	3.0	35
251	Enhanced performance and improved interfacial properties of polymer electrolyte membrane fuel cells fabricated using sputter-deposited Pt thin layers. Electrochimica Acta, 2008, 53, 6111-6116.	2.6	22
252	Enhanced Reliability of Electrochromic Devices with a LiPON Protective Layer. Journal of the Electrochemical Society, 2007, 154, P6.	1.3	12

#	Article	IF	CITATIONS
253	Fast switchable electrochromic properties of tungsten oxide nanowire bundles. Applied Physics Letters, 2007, 90, 173126.	1.5	95
254	Tandem dye-sensitized solar cell-powered electrochromic devices for the photovoltaic-powered smart window. Journal of Power Sources, 2007, 168, 533-536.	4.0	92
255	High Contrast Ratio and Rapid Switching Organic Polymeric Electrochromic Thin Films Based on Triarylamine Derivatives from Layer-by-Layer Assembly. Chemistry of Materials, 2006, 18, 5823-5825.	3.2	64
256	Improved electrochromic devices with an inorganic solid electrolyte protective layer. Solar Energy Materials and Solar Cells, 2006, 90, 477-484.	3.0	75
257	A Supramolecular Chiroptical Switch Using an Amorphous Azobenzene Polymer. Advanced Functional Materials, 2006, 16, 2089-2094.	7.8	57
258	A Snowman-like Array of Colloidal Dimers for Antireflecting Surfaces. Advanced Materials, 2004, 16, 274-277.	11.1	209
259	Interferometric inscription of surface relief gratings on optical fiber using azo polymer film. Applied Physics Letters, 2003, 83, 1080-1082.	1.5	33
260	Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films. Applied Physics Letters, 2003, 82, 3823-3825.	1.5	59
261	Spin-on-Based Fabrication of Titania Nanowires Using a Solâ^'Gel Process. Nano Letters, 2002, 2, 1101-1104.	4.5	54
262	Combined Effect of Catholyte Gap and Cell Voltage on Syngas Ratio in Continuous CO ₂ /H ₂ O Co-electrolysis. Journal of Electrochemical Science and Technology, 0, , .	0.9	4
263	lon Generation and Water Formation Imaging Regarding Fuel Cell Performance Degradation Through Hydrangea-Like Membrane Electrode Assembly Development. SSRN Electronic Journal, 0, , .	0.4	0
264	Improved platinumâ€nickel nanoparticles with dopamineâ€derived carbon shells for proton exchange membrane fuel cells. International Journal of Energy Research, 0, , .	2.2	1