
Christina Schütz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7294615/publications.pdf Version: 2024-02-01

<u> CHDISTINA SCHÃ1/477</u>

#	Article	IF	CITATIONS
1	SANS study of mixed cholesteric cellulose nanocrystal – gold nanorod suspensions. Chemical Communications, 2020, 56, 13001-13004.	2.2	13
2	From Equilibrium Liquid Crystal Formation and Kinetic Arrest to Photonic Bandgap Films Using Suspensions of Cellulose Nanocrystals. Crystals, 2020, 10, 199.	1.0	73
3	Synthesis, characterization, structures and in vitro antitumor activity of platinum(II) complexes bearing adeninato or methylated adeninato ligands. Inorganica Chimica Acta, 2020, 507, 119539.	1.2	1
4	Functionalization and patterning of nanocellulose films by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions. Nanoscale, 2019, 11, 19278-19284.	2.8	17
5	Thermodynamic Study of Ion-Driven Aggregation of Cellulose Nanocrystals. Biomacromolecules, 2019, 20, 3181-3190.	2.6	28
6	Anisotropic Diffusion and Phase Behavior of Cellulose Nanocrystal Suspensions. Langmuir, 2019, 35, 2289-2302.	1.6	23
7	Assembly, Gelation, and Helicoidal Consolidation of Nanocellulose Dispersions. Langmuir, 2019, 35, 3600-3606.	1.6	25
8	Nanoscale Assembly of Cellulose Nanocrystals during Drying and Redispersion. ACS Macro Letters, 2018, 7, 172-177.	2.3	35
9	Inducing nematic ordering of cellulose nanofibers using osmotic dehydration. Nanoscale, 2018, 10, 23157-23163.	2.8	13
10	Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering. Nanoscale, 2018, 10, 18113-18118.	2.8	23
11	Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation. NPG Asia Materials, 2018, 10, 455-465.	3.8	80
12	Effect of Source on the Properties and Behavior of Cellulose Nanocrystal Suspensions. ACS Sustainable Chemistry and Engineering, 2018, 6, 8317-8324.	3.2	35
13	A CaCO ₃ /nanocellulose-based bioinspired nacre-like material. Journal of Materials Chemistry A, 2017, 5, 16128-16133.	5.2	30
14	Thermodynamic Study of the Interaction of Bovine Serum Albumin and Amino Acids with Cellulose Nanocrystals. Langmuir, 2017, 33, 5473-5481.	1.6	47
15	Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films. Langmuir, 2017, 33, 228-234.	1.6	96
16	Cholesteric liquid crystal formation in suspensions of cellulose nanocrystals. Series in Sof Condensed Matter, 2016, , 871-897.	0.1	2
17	One-pot functionalization of cellulose nanocrystals with various cationic groups. Cellulose, 2016, 23, 3569-3576.	2.4	23
18	Correlation between structural properties and iridescent colors of cellulose nanocrystalline films. Cellulose, 2016, 23, 3601-3609.	2.4	36

Christina Schütz

#	Article	IF	CITATIONS
19	Confined self-assembly of cellulose nanocrystals in a shrinking droplet. Soft Matter, 2015, 11, 5374-5380.	1.2	40
20	Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nature Communications, 2015, 6, 7564.	5.8	379
21	Rod Packing in Chiral Nematic Cellulose Nanocrystal Dispersions Studied by Small-Angle X-ray Scattering and Laser Diffraction. Langmuir, 2015, 31, 6507-6513.	1.6	177
22	Macroscopic Control of Helix Orientation in Films Dried from Cholesteric Liquidâ€Crystalline Cellulose Nanocrystal Suspensions. ChemPhysChem, 2014, 15, 1477-1484.	1.0	136
23	Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Advances, 2014, 4, 17549.	1.7	129
24	Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Materials, 2014, 6, e80-e80.	3.8	679
25	Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids. PLoS ONE, 2012, 7, e45828.	1.1	78
26	On the role of tannins and iron in the Bogolan or mud cloth dyeing process. Textile Reseach Journal, 2012, 82, 1888-1896.	1.1	11