Christina SchÃ¹/₄tz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7294615/publications.pdf

Version: 2024-02-01

26 papers 2,233 citations

361296 20 h-index 26 g-index

27 all docs

27 docs citations

times ranked

27

2891 citing authors

#	Article	IF	CITATIONS
1	Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Materials, 2014, 6, e80-e80.	3.8	679
2	Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nature Communications, 2015, 6, 7564.	5.8	379
3	Rod Packing in Chiral Nematic Cellulose Nanocrystal Dispersions Studied by Small-Angle X-ray Scattering and Laser Diffraction. Langmuir, 2015, 31, 6507-6513.	1.6	177
4	Macroscopic Control of Helix Orientation in Films Dried from Cholesteric Liquidâ€Crystalline Cellulose Nanocrystal Suspensions. ChemPhysChem, 2014, 15, 1477-1484.	1.0	136
5	Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries. RSC Advances, 2014, 4, 17549.	1.7	129
6	Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films. Langmuir, 2017, 33, 228-234.	1.6	96
7	Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation. NPG Asia Materials, 2018, 10, 455-465.	3.8	80
8	Hard and Transparent Films Formed by Nanocellulose–TiO2 Nanoparticle Hybrids. PLoS ONE, 2012, 7, e45828.	1.1	78
9	From Equilibrium Liquid Crystal Formation and Kinetic Arrest to Photonic Bandgap Films Using Suspensions of Cellulose Nanocrystals. Crystals, 2020, 10, 199.	1.0	73
10	Thermodynamic Study of the Interaction of Bovine Serum Albumin and Amino Acids with Cellulose Nanocrystals. Langmuir, 2017, 33, 5473-5481.	1.6	47
11	Confined self-assembly of cellulose nanocrystals in a shrinking droplet. Soft Matter, 2015, 11, 5374-5380.	1.2	40
12	Correlation between structural properties and iridescent colors of cellulose nanocrystalline films. Cellulose, 2016, 23, 3601-3609.	2.4	36
13	Nanoscale Assembly of Cellulose Nanocrystals during Drying and Redispersion. ACS Macro Letters, 2018, 7, 172-177.	2.3	35
14	Effect of Source on the Properties and Behavior of Cellulose Nanocrystal Suspensions. ACS Sustainable Chemistry and Engineering, 2018, 6, 8317-8324.	3.2	35
15	A CaCO ₃ /nanocellulose-based bioinspired nacre-like material. Journal of Materials Chemistry A, 2017, 5, 16128-16133.	5.2	30
16	Thermodynamic Study of Ion-Driven Aggregation of Cellulose Nanocrystals. Biomacromolecules, 2019, 20, 3181-3190.	2.6	28
17	Assembly, Gelation, and Helicoidal Consolidation of Nanocellulose Dispersions. Langmuir, 2019, 35, 3600-3606.	1.6	25
18	One-pot functionalization of cellulose nanocrystals with various cationic groups. Cellulose, 2016, 23, 3569-3576.	2.4	23

#	Article	IF	CITATIONS
19	Assembly of cellulose nanocrystals in a levitating drop probed by time-resolved small angle X-ray scattering. Nanoscale, 2018, 10, 18113-18118.	2.8	23
20	Anisotropic Diffusion and Phase Behavior of Cellulose Nanocrystal Suspensions. Langmuir, 2019, 35, 2289-2302.	1.6	23
21	Functionalization and patterning of nanocellulose films by surface-bound nanoparticles of hydrolyzable tannins and multivalent metal ions. Nanoscale, 2019, 11, 19278-19284.	2.8	17
22	Inducing nematic ordering of cellulose nanofibers using osmotic dehydration. Nanoscale, 2018, 10, 23157-23163.	2.8	13
23	SANS study of mixed cholesteric cellulose nanocrystal – gold nanorod suspensions. Chemical Communications, 2020, 56, 13001-13004.	2.2	13
24	On the role of tannins and iron in the Bogolan or mud cloth dyeing process. Textile Reseach Journal, 2012, 82, 1888-1896.	1.1	11
25	Cholesteric liquid crystal formation in suspensions of cellulose nanocrystals. Series in Sof Condensed Matter, 2016, , 871-897.	0.1	2
26	Synthesis, characterization, structures and in vitro antitumor activity of platinum(II) complexes bearing adeninato or methylated adeninato ligands. Inorganica Chimica Acta, 2020, 507, 119539.	1.2	1