Patrick C Tobin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7294444/publications.pdf

Version: 2024-02-01

108 4,066 32 papers citations h-index

110 110 3394
all docs docs citations times ranked citing authors

59

g-index

#	Article	IF	CITATIONS
1	Development of Azalea Lace Bug, Stephanitis pyrioides, on Susceptible and Resistant Rhododendron species in Western Washington. Journal of Economic Entomology, 2022, 115, 233-239.	1.8	1
2	Effects of temperature and host plant fragmentation on Lymantria dispar population growth along its expanding population front. Biological Invasions, 2022, 24, 2679-2691.	2.4	4
3	Spread rates do not necessarily predict outbreak dynamics in a broadly distributed invasive insect. Forest Ecology and Management, 2022, 520, 120357.	3.2	3
4	Evolution of Disease Severity and Susceptibility in the Asteraceae to the Powdery Mildew <i>Golovinomyces latisporus</i> : Major Phylogenetic Structure Coupled With Highly Variable Disease Severity at Fine Scales. Plant Disease, 2021, 105, 268-275.	1.4	7
5	Evaluation of Trapping Schemes to Detect Emerald Ash Borer (Coleoptera: Buprestidae). Journal of Economic Entomology, 2021, 114, 1201-1210.	1.8	9
6	Comparison of Pollen Grain Treatments Without Mechanical Fracturation Prior to Protein Quantification. Journal of Insect Science, 2021, 21, .	1.5	3
7	Predicting non-native insect impact: focusing on the trees to see the forest. Biological Invasions, 2021, 23, 3921-3936.	2.4	5
8	A global genetic analysis of herbarium specimens reveals the invasion dynamics of an introduced plant pathogen. Fungal Biology, 2021, 125, 585-595.	2. 5	10
9	Bigleaf maple, Acer macrophyllum Pursh, decline in western Washington, USA. Forest Ecology and Management, 2021, 501, 119681.	3.2	3
10	Spatiotemporal variability in Allee effects of invading gypsy moth populations. Biological Invasions, 2020, 22, 189-193.	2.4	7
11	Spatial and temporal changes in male gypsy moth wing morphology reflect host tree phenology and habitat quality. Agricultural and Forest Entomology, 2020, 22, 390-400.	1.3	1
12	Oregon vs. the Gypsy Moth: Forty Years of Battling an Invasive Species. American Entomologist, 2020, 66, 50-58.	0.2	5
13	Effectiveness of herbicides on Lysimachia vulgaris: a 17-year case study. Invasive Plant Science and Management, 2020, 13, 282-287.	1.1	0
14	Sequencing Herbarium Specimens of a Common Detrimental Plant Disease (Powdery Mildew). Phytopathology, 2020, 110, 1248-1254.	2,2	61
15	Phenology of Douglas-Fir Beetle (Coleoptera: Curculionidae) and Its Role in Douglas-Fir Mortality in Western Washington. Environmental Entomology, 2020, 49, 246-254.	1.4	2
16	Can gypsy moth stand the heat? A reciprocal transplant experiment with an invasive forest pest across its southern range margin. Biological Invasions, 2019, 21, 1365-1378.	2.4	13
17	Quantifying the elemental composition of mosses in western Washington USA. Science of the Total Environment, 2019, 693, 133404.	8.0	11
18	Evolutionary history predicts highâ€impact invasions by herbivorous insects. Ecology and Evolution, 2019, 9, 12216-12230.	1.9	28

#	Article	lF	Citations
19	Ground application of mating disruption against the gypsy moth (Lepidoptera: Erebidae). Journal of Applied Entomology, 2019, 143, 1154-1160.	1.8	1
20	Effects of copper exposure and increased temperatures on Collembola in western Washington, USA. City and Environment Interactions, 2019, 4, 100026.	4.2	4
21	Range expansion of <i>Lymantria dispar dispar</i> (L.) (Lepidoptera: Erebidae) along its northâ€western margin in North America despite low predicted climatic suitability. Journal of Biogeography, 2019, 46, 58-69.	3.0	19
22	Relationship between efficacy of mating disruption and gypsy moth density. International Journal of Pest Management, 2019, 65, 44-52.	1.8	11
23	Increases in summer temperatures decrease the survival of an invasive forest insect. Biological Invasions, 2018, 20, 365-374.	2.4	33
24	Symbionts mediate oviposition behaviour in invasive and native woodwasps. Agricultural and Forest Entomology, 2018, 20, 442-450.	1.3	6
25	Managing invasive species. F1000Research, 2018, 7, 1686.	1.6	27
26	Phenology of Hemlock Woolly Adelgid (Hemiptera: Adelgidae) in the Central Appalachian Mountains, USA. Journal of Economic Entomology, 2018, 111, 2483-2487.	1.8	5
27	Variation in growth and developmental responses to supraoptimal temperatures near latitudinal range limits of gypsy moth <i>Lymantria dispar</i> (L.), an expanding invasive species. Physiological Entomology, 2017, 42, 181-190.	1.5	42
28	The big chill: quantifying the effect of the 2014 North American cold wave on hemlock woolly adelgid populations in the central Appalachian Mountains. Population Ecology, 2017, 59, 251-258.	1.2	21
29	Landscape-Level Patterns of Elevated FS1 Asian Allele Frequencies in Populations of Gypsy Moth (Lepidoptera: Erebidae) at a Northern U.S. Boundary. Environmental Entomology, 2017, 46, 403-412.	1.4	4
30	Developmental synchrony in multivoltine insects: generation separation versus smearing. Population Ecology, 2016, 58, 479-491.	1.2	24
31	Invasion in patchy landscapes is affected by dispersal mortality and mateâ€finding failure. Ecology, 2016, 97, 3389-3401.	3.2	14
32	All quiet on the western front? Using phenological inference to detect the presence of a latent gypsy moth invasion in Northern Minnesota. Biological Invasions, 2016, 18, 3561-3573.	2.4	18
33	Host Range Specificity of <i>Scymnus camptodromus</i> (Coleoptera: Coccinellidae), A Predator of Hemlock Woolly Adelgid (Hemiptera: Adelgidae). Environmental Entomology, 2016, 45, 94-100.	1.4	4
34	Eradication of Invading Insect Populations: From Concepts to Applications. Annual Review of Entomology, 2016, 61, 335-352.	11.8	144
35	Effects of winter temperatures, spring degree-day accumulation, and insect population source on phenological synchrony between forest tent caterpillar and host trees. Forest Ecology and Management, 2016, 362, 241-250.	3.2	50
36	Large-scale forest inventories of the United States and China reveal positive effects of biodiversity on productivity. Forest Ecosystems, 2015, 2, .	3.1	11

3

#	Article	IF	CITATIONS
37	Population cycles produce periodic range boundary pulses. Ecography, 2015, 38, 1200-1211.	4.5	14
38	Ubiquitous volatile compound facilitates efficient host location by a non-native ambrosia beetle. Biological Invasions, 2015, 17, 675-686.	2.4	31
39	Replacement of a dominant viral pathogen by a fungal pathogen does not alter the collapse of a regional forest insect outbreak. Oecologia, 2015, 177, 785-797.	2.0	36
40	Ecological Consequences of Pathogen and Insect Invasions. Current Forestry Reports, 2015, 1, 25-32.	7.4	45
41	Efficacies and Second-Year Effects of SPLAT GMâ,,¢ and SPLAT GMâ,,¢ Organic Formulations. Insects, 2015, 6, 1-12.	2.2	3
42	Performance of Wild and Laboratory-Reared Gypsy Moth (Lepidoptera: Erebidae): A Comparison between Foliage and Artificial Diet. Environmental Entomology, 2015, 44, 864-873.	1.4	17
43	Biodiversity influences plant productivity through niche–efficiency. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5738-5743.	7.1	58
44	How topography induces reproductive asynchrony and alters gypsy moth invasion dynamics. Journal of Animal Ecology, 2015, 84, 188-198.	2.8	22
45	The Effect of Male and Female Age on <l>Lymantria dispar</l> (Lepidoptera: Lymantriidae) Fecundity. Journal of Economic Entomology, 2014, 107, 1076-1083.	1.8	6
46	Determinants of successful arthropod eradication programs. Biological Invasions, 2014, 16, 401-414.	2.4	124
47	Supraoptimal temperatures influence the range dynamics of a nonâ€native insect. Diversity and Distributions, 2014, 20, 813-823.	4.1	43
48	The cost of gypsy moth sex in the city. Urban Forestry and Urban Greening, 2014, 13, 459-468.	5.3	56
49	The Influence of Climate Change on Insect Invasions in Temperate Forest Ecosystems. Forestry Sciences, 2014, , 267-293.	0.4	13
50	The relationship between male moth density and female mating success in invading populations of <i><scp>L</scp>ymantria dispar</i> . Entomologia Experimentalis Et Applicata, 2013, 146, 103-111.	1.4	33
51	Using delimiting surveys to characterize the spatiotemporal dynamics facilitates the management of an invasive nonâ€native insect. Population Ecology, 2013, 55, 545-555.	1.2	14
52	When one is not necessarily a lonely number: initial colonization dynamics of Adelges tsugae on eastern hemlock, Tsuga canadensis. Biological Invasions, 2013, 15, 1925-1932.	2.4	22
53	Interruption of the Semiochemical-Based Attraction of Ambrosia Beetles to Ethanol-Baited Traps and Ethanol-Injected Trap Trees by Verbenone. Environmental Entomology, 2013, 42, 539-547.	1.4	30
54	Persistence of the Gypsy Moth Pheromone, Disparlure, in the Environment in Various Climates. Insects, 2013, 4, 104-116.	2.2	7

#	Article	IF	CITATIONS
55	Combining Tactics to Exploit Allee Effects for Eradication of Alien Insect Populations. Journal of Economic Entomology, 2012, 105, 1-13.	1.8	83
56	The ecology, geopolitics, and economics of managing <i>Lymantria dispar </i> in the United States. International Journal of Pest Management, 2012, 58, 195-210.	1.8	70
57	Effects of Ice Storm Damage on Hardwood Survival and Growth in Ohio. Northern Journal of Applied Forestry, 2012, 29, 53-59.	0.5	16
58	Release, establishment, and initial spread of the fungal pathogen Entomophaga maimaiga in island populations of Lymantria dispar. Biological Control, 2012, 63, 31-39.	3.0	18
59	Field Evaluation of Effect of Temperature on Release of Disparlure From a Pheromone-Baited Trapping System Used to Monitor Gypsy Moth (Lepidoptera: Lymantriidae). Journal of Economic Entomology, 2011, 104, 1265-1271.	1.8	12
60	Exploiting Allee effects for managing biological invasions. Ecology Letters, 2011, 14, 615-624.	6.4	218
61	Introduced pathogens follow the invasion front of a spreading alien host. Journal of Animal Ecology, 2011, 80, 1217-1226.	2.8	38
62	Anthropogenic drivers of gypsy moth spread. Biological Invasions, 2011, 13, 2077-2090.	2.4	49
63	Projecting Insect Voltinism Under High and Low Greenhouse Gas Emission Conditions. Environmental Entomology, 2011, 40, 505-515.	1.4	20
64	Population Ecology Considerations for Monitoring and Managing Biological Invasions. GIS Applications in Agriculture Series, 2011, , 29-57.	0.3	1
65	Human visitation rates to the Apostle Islands National Lakeshore and the introduction of the non-native species Lymantria dispar (L.). Journal of Environmental Management, 2010, 91, 1991-1996.	7.8	7
66	Effects of SPLAT ^{\hat{A}^{\otimes}} GM sprayable pheromone formulation on gypsy moth mating success. Entomologia Experimentalis Et Applicata, 2010, 136, 109-115.	1.4	13
67	What Does "Local―Firewood Buy You? Managing the Risk of Invasive Species Introduction. Journal of Economic Entomology, 2010, 103, 1569-1576.	1.8	20
68	Geographic Variation in Diapause Induction: The Grape Berry Moth (Lepidoptera: Tortricidae). Environmental Entomology, 2010, 39, 1751-1755.	1.4	11
69	Micro-managing arthropod invasions: eradication and control of invasive arthropods with microbes. Biological Invasions, 2010, 12, 2895-2912.	2.4	32
70	Gypsy moth (Lepidoptera: Lymantriidae) in Central Asia. American Entomologist, 2009, 55, 258-265.	0.2	15
71	Assessment of Potential Fumigants to Control <i>Chaetodactylus krombeini</i> (Acari:) Tj ETQq1 1 0.784314 rg	gBT /Overl	ock 10 Tf 50 10
72	The role of Allee effects in gypsy moth, <i>Lymantria dispar</i> (L.), invasions. Population Ecology, 2009, 51, 373-384.	1,2	92

#	Article	IF	Citations
73	Mateâ€finding failure as an important cause of Allee effects along the leading edge of an invading insect population. Entomologia Experimentalis Et Applicata, 2009, 133, 307-314.	1.4	69
74	Gypsy Moth (Lepidoptera: Lymantriidae) Flight Behavior and Phenology Based on Field-Deployed Automated Pheromone-Baited Traps. Environmental Entomology, 2009, 38, 1555-1562.	1.4	30
75	North American Eradications of Asian and European Gypsy Moth. , 2009, , 71-89.		33
76	Population Ecology of Managing Insect Invasions. , 2009, , 33-45.		0
77	Population Ecology of Insect Invasions and Their Management. Annual Review of Entomology, 2008, 53, 387-408.	11.8	507
78	Historical and projected interactions between climate change and insect voltinism in a multivoltine species. Global Change Biology, 2008, 14, 951-957.	9.5	180
79	Long-Distance Dispersal of the Gypsy Moth (Lepidoptera: Lymantriidae) Facilitated Its Initial Invasion of Wisconsin. Environmental Entomology, 2008, 37, 87-93.	1.4	46
80	Preoutbreak Dynamics of a Recently Established Invasive Herbivore: Roles of Natural Enemies and Habitat Structure in Stage-Specific Performance of Gypsy Moth (Lepidoptera: Lymantriidae) Populations in Northeastern Wisconsin. Environmental Entomology, 2008, 37, 1174-1184.	1.4	16
81	Preoutbreak Dynamics of a Recently Established Invasive Herbivore: Roles of Natural Enemies and Habitat Structure in Stage-Specific Performance of Gypsy Moth (Lepidoptera: Lymantriidae) Populations in Northeastern Wisconsin. Environmental Entomology, 2008, 37, 1174-1184.	1.4	7
82	Spread of beech bark disease in the eastern United States and its relationship to regional forest composition. Canadian Journal of Forest Research, 2007, 37, 726-736.	1.7	119
83	Invasion speed is affected by geographical variation in the strength of Allee effects. Ecology Letters, 2007, 10, 36-43.	6.4	165
84	Comparison of methods for estimating the spread of a non-indigenous species. Journal of Biogeography, 2007, 34, 305-312.	3.0	83
85	Persistent effects of aerial applications of disparlure on gypsy moth: trap catch and mating success. Entomologia Experimentalis Et Applicata, 2007, 125, 223-229.	1.4	15
86	Space–time patterns during the establishment of a nonindigenous species. Population Ecology, 2007, 49, 257-263.	1.2	11
87	Contour Mapping and Number of Point Observations. Journal of Economic Entomology, 2006, 99, 599-600.	1.8	5
88	Allee effects and pulsed invasion by the gypsy moth. Nature, 2006, 444, 361-363.	27.8	218
89	Invasibility of mature and 15-year-old deciduous forests by exotic plants. Plant Ecology, 2006, 186, 57-68.	1.6	45
90	Persistence of invading gypsy moth populations in the United States. Oecologia, 2006, 147, 230-237.	2.0	53

#	Article	IF	CITATIONS
91	Growth of newly established alien populations: comparison of North American gypsy moth colonies with invasion theory. Population Ecology, 2006, 48, 253-262.	1.2	71
92	Roles of dispersal, stochasticity, and nonlinear dynamics in the spatial structuring of seasonal natural enemy–victim populations. Population Ecology, 2005, 47, 221-227.	1.2	5
93	Spread of Gypsy Moth (Lepidoptera: Lymantriidae) and Its Relationship to Defoliation. Environmental Entomology, 2005, 34, 1448-1455.	1.4	14
94	Management of the Gypsy Moth through a Decision Algorithm under the STS Project. American Entomologist, 2004, 50, 200-209.	0.2	54
95	Estimation of the spatial autocorrelation function: consequences of sampling dynamic populations in space and time. Ecography, 2004, 27, 767-775.	4.5	45
96	Spatial dynamics and cross-correlation in a transient predator-prey system. Journal of Animal Ecology, 2003, 72, 460-467.	2.8	53
97	Phenology of Grape Berry Moth (Lepidoptera: Tortricidae) in Cultivated Grape at Selected Geographic Locations. Environmental Entomology, 2003, 32, 340-346.	1.4	44
98	Geostatistical Analysis and the Impact of Moisture on the Spatial and Temporal Distribution of larvalMusca domestica(Diptera: Muscidae). Environmental Entomology, 2002, 31, 273-280.	1.4	7
99	Diapause Maintenance and Termination in Grape Berry Moth (Lepidoptera: Tortricidae). Environmental Entomology, 2002, 31, 708-713.	1.4	28
100	Diapause Induction in the Grape Berry Moth (Lepidoptera: Tortricidae). Environmental Entomology, 2001, 30, 540-544.	1.4	21
101	Modeling Development in Grape Berry Moth (Lepidoptera: Tortricidae). Environmental Entomology, 2001, 30, 692-699.	1.4	58
102	Grape Cane Gallmaker (Coleoptera: Curculionidae) and its Impact on Cultivated Grapes. Journal of Economic Entomology, 2000, 93, 795-799.	1.8	5
103	Reservoir Competence of Carcinops pumilio for Salmonella enteritidis (Eubacteriales:) Tj ETQq1 1 0.784314 rgBT	/Overlock 1.8	10 Tf 50 26
104	Dispersal of Muscidifurax raptorellus Kogan and Legner (Hymenoptera: Pteromalidae) in a High-Rise Poultry Facility. Biological Control, 1999, 16, 68-72.	3.0	20
105	Flotation Method for Extracting Insects from Poultry Manure Samples. Journal of Medical Entomology, 1999, 36, 121-123.	1.8	9
106	Spatio-Temporal Dynamics of Resident and Immigrating Populations of Carcinops pumilio (Coleoptera:) Tj ETQq0 0	0 rgBT /O	verlock 10
107	Socio-environmental drivers of establishment of Lymantria dispar, a nonnative forest pest, in the United States. Biological Invasions, 0, , 1 .	2.4	3
108	The impact is in the details: evaluating a standardized protocol and scale for determining non-native insect impact. NeoBiota, 0, 55, 61-83.	1.0	7