
Rahul Srinivasan, Mbbs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7294385/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Assessment of Stroke-Induced Regulation of miR-20a-3p and Its Role as a Neuroprotectant. Translational Stroke Research, 2022, 13, 432-448.	4.2	11
2	Magnetic Fields and Magnetically Stimulated Gold-Coated Superparamagnetic Iron Oxide Nanoparticles Differentially Modulate L-Type Voltage-Gated Calcium Channel Activity in Midbrain Neurons. ACS Applied Nano Materials, 2022, 5, 205-215.	5.0	7
3	Cytisine is neuroprotective in female but not male 6â€hydroxydopamine lesioned parkinsonian mice and acts in combination with 17â€î²â€estradiol to inhibit apoptotic endoplasmic reticulum stress in dopaminergic neurons. Journal of Neurochemistry, 2021, 157, 710-726.	3.9	9
4	Adeno-Associated Virus Expression of α-Synuclein as a Tool to Model Parkinson's Disease: Current Understanding and Knowledge Gaps. , 2021, 12, 1120.		11
5	Calcium signals in astrocytes of the fly brain promote sleep. Cell Calcium, 2021, 94, 102341.	2.4	1
6	Astrocytic mitochondria in adult mouse brain slices show spontaneous calcium influx events with unique properties. Cell Calcium, 2021, 96, 102383.	2.4	17
7	Emerging Roles for Aberrant Astrocytic Calcium Signals in Parkinson's Disease. Frontiers in Physiology, 2021, 12, 812212.	2.8	7
8	Macrophage Migration Inhibitory Factor Alters Functional Properties of CA1 Hippocampal Neurons in Mouse Brain Slices. International Journal of Molecular Sciences, 2020, 21, 276.	4.1	4
9	Quantifying Spontaneous Ca ²⁺ Fluxes and their Downstream Effects in Primary Mouse Midbrain Neurons. Journal of Visualized Experiments, 2020, , .	0.3	5
10	Abstract TP271: Sex Specific Regulation of Astrocytic Mitochondrial Function by Microrna (mir)20a-3p Under Ischemic Conditions. Stroke, 2020, 51, .	2.0	0
11	GECIquant: Semi-automated Detection and Quantification of Astrocyte Intracellular Ca2+ Signals Monitored with GCaMP6f. Springer Series in Computational Neuroscience, 2019, , 455-470.	0.3	7
12	Reliable Identification of Living Dopaminergic Neurons in Midbrain Cultures Using RNA Sequencing and TH-promoter-driven eGFP Expression. Journal of Visualized Experiments, 2017, , .	0.3	6
13	New Transgenic Mouse Lines for Selectively Targeting Astrocytes and Studying Calcium Signals in Astrocyte Processes In Situ and InÂVivo. Neuron, 2016, 92, 1181-1195.	8.1	283
14	Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons. Journal of Neuroscience, 2016, 36, 65-79.	3.6	44
15	Ca2+ signaling in astrocytes from Ip3r2â^'/â^' mice in brain slices and during startle responses in vivo. Nature Neuroscience, 2015, 18, 708-717.	14.8	411
16	Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin. Journal of General Physiology, 2014, 144, 81-104.	1.9	39
17	Pharmacological chaperoning of nAChRs: A therapeutic target for Parkinson's disease. Pharmacological Research, 2014, 83, 20-29.	7.1	52
18	Nicotine exploits a COPI-mediated process for chaperone-mediated up-regulation of its receptors. Journal of General Physiology, 2014, 143, 51-66.	1.9	61

#	Article	IF	CITATIONS
19	Transcriptional regulation by nicotine in dopaminergic neurons. Biochemical Pharmacology, 2013, 86, 1074-1083.	4.4	27
20	Förster Resonance Energy Transfer (FRET) Correlates of Altered Subunit Stoichiometry in Cys-Loop Receptors, Exemplified by Nicotinic α4β2. International Journal of Molecular Sciences, 2012, 13, 10022-10040.	4.1	20
21	Pharmacological Chaperoning of Nicotinic Acetylcholine Receptors Reduces the Endoplasmic Reticulum Stress Response. Molecular Pharmacology, 2012, 81, 759-769.	2.3	57
22	Live-Cell Imaging of Single Receptor Composition Using Zero-Mode Waveguide Nanostructures. Nano Letters, 2012, 12, 3690-3694.	9.1	63
23	α7β2 Nicotinic Acetylcholine Receptors Assemble, Function, and Are Activated Primarily via Their α7-α7 Interfaces. Molecular Pharmacology, 2012, 81, 175-188.	2.3	56
24	Psychiatric Drugs Bind to Classical Targets Within Early Exocytotic Pathways: Therapeutic Effects. Biological Psychiatry, 2012, 72, 907-915.	1.3	51
25	Characterizing functional α6β2 nicotinic acetylcholine receptors in vitro: Mutant β2 subunits improve membrane expression, and fluorescent proteins reveal responsive cells. Biochemical Pharmacology, 2011, 82, 852-861.	4.4	34
26	Trafficking of α4* Nicotinic Receptors Revealed by Superecliptic Phluorin. Journal of Biological Chemistry, 2011, 286, 31241-31249.	3.4	50
27	Nicotine up-regulates $\hat{l} \pm 4 \hat{l}^2$ nicotinic receptors and ER exit sites via stoichiometry-dependent chaperoning. Journal of General Physiology, 2011, 137, 59-79.	1.9	153
28	Pharmacological chaperoning of nicotinic receptors begins in the endoplasmic reticulum: Compartments and stoichiometries. Biochemical Pharmacology, 2009, 78, 900.	4.4	0
29	Nicotine is a Selective Pharmacological Chaperone of Acetylcholine Receptor Number and Stoichiometry. Implications for Drug Discovery. AAPS Journal, 2009, 11, 167-177.	4.4	148
30	Characterizing Nicotine-Induced α4â^— nAChR Upregulation with Fluorescence Microscopy. Biophysical Journal, 2009, 96, 105a.	0.5	0
31	Cellular Basis Of Nicotine-induced nAChr Upregulation. Biophysical Journal, 2009, 96, 165a.	0.5	0
32	Protein kinase C epsilon contributes to basal and sensitizing responses of TRPV1 to capsaicin in rat dorsal root ganglion neurons. European Journal of Neuroscience, 2008, 28, 1241-1254.	2.6	42
33	Engineering an endomorphin-2 gene for use in neuropathic pain therapy. Pain, 2007, 133, 29-38.	4.2	60
34	An HSV vector system for selection of ligand-gated ion channel modulators. Nature Methods, 2007, 4, 733-739.	19.0	20
35	164. HSV-1 Vector-Based Assay To Identify Inhibitors of the Vanilloid Receptor. Molecular Therapy, 2006, 13, S63-S64.	8.2	Ο
36	1071. Development and Characterization of HSV-1 Vector-Expressed Dominant Negative PKC epsilon for Pain Therapy. Molecular Therapy, 2006, 13, S411.	8.2	0