
Guillermo J Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7294176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Generation of an induced pluripotent stem cell line from a healthy Caucasian male. Stem Cell Research, 2022, 60, 102717.	0.7	1
2	Epigenetic Changes Governing Scn5a Expression in Denervated Skeletal Muscle. International Journal of Molecular Sciences, 2021, 22, 2755.	4.1	7
3	CPVT-Associated Mutation P.G357S-RYR2 Promotes a Gain of Function in Patient-Specific Induced Pluripotent Stem Cell-Derived Cardiomyocytes (iPS-CM). Biophysical Journal, 2020, 118, 255a.	0.5	1
4	An SCN1B Variant Affects Both Cardiac-Type (NaV1.5) and Brain-Type (NaV1.1) Sodium Currents and Contributes to Complex Concomitant Brain and Cardiac Disorders. Frontiers in Cell and Developmental Biology, 2020, 8, 528742.	3.7	13
5	Comparative Study of the Effects of an SCN5A Mutation within a Family Diagnosed with Brugada Syndrome using iPS-CM. Biophysical Journal, 2020, 118, 500a.	0.5	2
6	β-Adrenergic Pathway is Enhanced by Hormone-Induced Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (iPS-CM). Biophysical Journal, 2019, 116, 383a.	0.5	0
7	Extra Virgin Olive Oil Contains a Phenolic Inhibitor of the Histone Demethylase LSD1/KDM1A. Nutrients, 2019, 11, 1656.	4.1	26
8	Sudden infant death as the most severe phenotype caused by genetic modulation in a family with atrial fibrillation. Forensic Science International: Genetics, 2019, 43, 102159.	3.1	1
9	Experimental Models of Brugada syndrome. International Journal of Molecular Sciences, 2019, 20, 2123.	4.1	28
10	Cardiac Sodium Current is Severely Impaired in Induced Pluripotent Stem Cell-Derived Cardiomyocytes from Brugada Syndrome Patients. Biophysical Journal, 2019, 116, 390a-391a.	0.5	0
11	Elucidating the Role of K+ Channels during In Vitro Capacitation of Boar Spermatozoa: Do SLO1 Channels Play a Crucial Role?. International Journal of Molecular Sciences, 2019, 20, 6330.	4.1	12
12	La flecainida reduce las arritmias ventriculares en pacientes con taquicardia ventricular polimórfica catecolaminérgica genotipo RyR2 positivo. Revista Espanola De Cardiologia, 2018, 71, 185-191.	1.2	7
13	Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. Journal of Molecular and Cellular Cardiology, 2018, 114, 10-19.	1.9	47
14	Flecainide Reduces Ventricular Arrhythmias in Patients With Genotype RyR2-positive Catecholaminergic Polymorphic Ventricular Tachycardia. Revista Espanola De Cardiologia (English Ed) Tj ETQq0 () OogBT /C	Dve9lock 10 Tf
15	Contribution of Cardiac Sodium Channel Î ² -Subunit Variants to Brugada Syndrome. Circulation Journal, 2015, 79, 2118-2129.	1.6	9
16	Clinical and molecular characterization of a cardiac ryanodine receptor founder mutation causing catecholaminergic polymorphic ventricular tachycardia. Heart Rhythm, 2015, 12, 1636-1643.	0.7	38
17	The smooth muscle-type β1subunit potentiates activation by DiBAC4(3) in recombinant BK channels. Channels, 2014, 8, 95-102.	2.8	1
18	A missense mutation in the sodium channel β1b subunit reveals SCN1B as a susceptibility gene underlying long QT syndrome. Heart Rhythm, 2014, 11, 1202-1209.	0.7	33

Guillermo J Perez

#	Article	IF	CITATIONS
19	Protein arginine methyl transferasesâ€3 and â€5 increase cell surface expression of cardiac sodium channel. FEBS Letters, 2013, 587, 3159-3165.	2.8	40
20	Large-conductance calcium-activated potassium current modulates excitability in isolated canine intracardiac neurons. American Journal of Physiology - Cell Physiology, 2013, 304, C280-C286.	4.6	12
21	A Missense Mutation in the Sodium Channel β2 Subunit Reveals <i>SCN2B</i> as a New Candidate Gene for Brugada Syndrome. Human Mutation, 2013, 34, 961-966.	2.5	96
22	DiBAC4(3) hits a "sweet spot―for the activation of arterial large-conductance Ca2+-activated potassium channels independently of the β1-subunit. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1471-H1482.	3.2	9
23	Molecular heterogeneity of large-conductance calcium-activated potassium channels in canine intracardiac ganglia. Channels, 2013, 7, 322-328.	2.8	7
24	A Novel Missense Mutation, 1890T, in the Pore Region of Cardiac Sodium Channel Causes Brugada Syndrome. PLoS ONE, 2013, 8, e53220.	2.5	22
25	A Common Single Nucleotide Polymorphism Can Exacerbate Long-QT Type 2 Syndrome Leading to Sudden Infant Death. Circulation: Cardiovascular Genetics, 2010, 3, 199-206.	5.1	53
26	Overlapping LQT1 and LQT2 Phenotype in a Patient with Long QT Syndrome Associated with Loss-of-Function Variations in KCNQ1 and KCNH2. Biophysical Journal, 2010, 98, 116a.	0.5	0
27	Genetics and cardiac channelopathies. Genetics in Medicine, 2010, 12, 260-267.	2.4	96
28	Overlapping LQT1 and LQT2 phenotype in a patient with long QT syndrome associated with loss-of-function variations in KCNQ1 and KCNH2. Canadian Journal of Physiology and Pharmacology, 2010, 88, 1181-1190.	1.4	12
29	Kir2.3 knockâ€down decreases <i>I</i> _{K1} current in neonatal rat cardiomyocytes. FEBS Letters, 2008, 582, 2338-2342.	2.8	7
30	High sensitivity of the sheep pulmonary vein antrum to acetylcholine stimulation. Journal of Applied Physiology, 2008, 105, 293-298.	2.5	4
31	Functional expression of "cardiac-type―Nav1.5 sodium channel in canine intracardiac ganglia. Heart Rhythm, 2006, 3, 842-850.	0.7	43
32	Twinkle Twinkle Little Spark: Out of Tune Potassium Channels. , 2005, , 145-155.		0
33	Dual Effect of Tamoxifen on Arterial KCa Channels Does Not Depend on the Presence of the β1 Subunit. Journal of Biological Chemistry, 2005, 280, 21739-21747.	3.4	19
34	Electrophysiologic Properties and Antiarrhythmic Actions of a Novel Antianginal Agent. Journal of Cardiovascular Pharmacology and Therapeutics, 2004, 9, S65-S83.	2.0	115
35	Ionic and Cellular Basis for the Predominance of the Brugada Syndrome Phenotype in Males. Circulation, 2002, 106, 2004-2011.	1.6	352
36	Ca2+Sparks and Their Function in Human Cerebral Arteries. Stroke, 2002, 33, 802-808.	2.0	90

Guillermo J Perez

#	Article	IF	CITATIONS
37	Ca2+ sparks and BK currents in gallbladder myocytes: role in CCK-induced response. American Journal of Physiology - Renal Physiology, 2002, 282, G165-G174.	3.4	39
38	Micromolar Ca ²⁺ from sparks activates Ca ²⁺ -sensitive K ⁺ channels in rat cerebral artery smooth muscle. American Journal of Physiology - Cell Physiology, 2001, 281, C1769-C1775.	4.6	186
39	Vasoregulation by the β1 subunit of the calcium-activated potassium channel. Nature, 2000, 407, 870-876.	27.8	772
40	Communication of local calcium release (calcium sparks) from ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) to calcium-sensitive potassium (BK) channels in gallbladder smooth muscle (GBSM). Gastroenterology, 2000, 118, A859.	1.3	0
41	Functional Coupling of Ryanodine Receptors to KCa Channels in Smooth Muscle Cells from Rat Cerebral Arteries. Journal of General Physiology, 1999, 113, 229-238.	1.9	261
42	Reconstitution of expressed KCa channels from Xenopus oocytes to lipid bilayers. Biophysical Journal, 1994, 66, 1022-1027.	0.5	57
43	Characterization of large-conductance, calcium-activated potassium channels from human myometrium. American Journal of Obstetrics and Gynecology, 1993, 168, 652-660.	1.3	58
44	Calcium-activated K+ channels as modulators of human myometrial contractile activity. American Journal of Physiology - Cell Physiology, 1993, 265, C976-C985.	4.6	143