
Cristina Benatti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7294068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A flavonoid, quercetin, is capable of enhancing long-term memory formation if encountered at different times in the learning, memory formation, and memory recall continuum. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2022, 208, 253-265.	1.6	6
2	Nature versus nurture in heat stress induced learning between inbred and outbred populations of Lymnaea stagnalis. Journal of Thermal Biology, 2022, 103, 103170.	2.5	11
3	Comprehensive Pain Management Using Opioids for Children and Adolescents: Still a Wild Goose to Chase?. Children, 2022, 9, 347.	1.5	1
4	Nonâ€psychotropic <i>Cannabis sativa</i> L. phytocomplex modulates microglial inflammatory response through <scp>CB2</scp> receptorsâ€, endocannabinoidsâ€, and <scp>NFâ€₽B</scp> â€mediated signaling. Phytotherapy Research, 2022, 36, 2246-2263.	5.8	22
5	What can we teach <i>Lymnaea</i> and what can <i>Lymnaea</i> teach us?. Biological Reviews, 2021, 96, 1590-1602.	10.4	32
6	Carnosine Protects Macrophages against the Toxicity of AÎ ² 1-42 Oligomers by Decreasing Oxidative Stress. Biomedicines, 2021, 9, 477.	3.2	27
7	To eat or not to eat: a Garcia effect in pond snails (Lymnaea stagnalis). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 479-495.	1.6	24
8	Digital Phenotyping and Dynamic Monitoring of Adolescents Treated for Cancer to Guide Intervention: Embracing a New Era. Frontiers in Oncology, 2021, 11, 673581.	2.8	13
9	Long-term memory of configural learning is enhanced via CREB upregulation by the flavonoid quercetin in <i>Lymnaea stagnalis</i> . Journal of Experimental Biology, 2021, 224, .	1.7	15
10	Serum metabolic signature of bingeâ€like palatable food consumption in female rats by nuclear magnetic resonance spectroscopy. NMR in Biomedicine, 2021, 34, e4469.	2.8	1
11	Lymnaea stagnalis as model for translational neuroscience research: From pond to bench. Neuroscience and Biobehavioral Reviews, 2020, 108, 602-616.	6.1	51
12	Psychosocial assessment of families caring for a child with acute lymphoblastic leukemia, epilepsy or asthma: Psychosocial risk as network of interacting symptoms. PLoS ONE, 2020, 15, e0230194.	2.5	5
13	Vortioxetine Prevents Lipopolysaccharide-Induced Memory Impairment Without Inhibiting the Initial Inflammatory Cascade. Frontiers in Pharmacology, 2020, 11, 603979.	3.5	7
14	The Many Faces of Mitochondrial Dysfunction in Depression: From Pathology to Treatment. Frontiers in Pharmacology, 2019, 10, 995.	3.5	39
15	Executive functioning in children with epilepsy: Genes matter. Epilepsy and Behavior, 2019, 95, 137-147.	1.7	6
16	Modulation of neuroplasticity-related targets following stress-induced acute escape deficit. Behavioural Brain Research, 2019, 364, 140-148.	2.2	11
17	Cannabidiol-enriched Cannabis sativa L. extract modulates inflammatory-induced human peripheral mononuclear cells response. Planta Medica, 2019, 85, .	1.3	1
18	Neither all anti-inflammatory drugs nor all doses are effective in accelerating the antidepressant-like effect of fluoxetine in an animal model of depression. Journal of Affective Disorders, 2018, 235, 124-128.	4.1	10

CRISTINA BENATTI

#	Article	IF	CITATIONS
19	Molecular changes associated with escitalopram response in a stress-based model of depression. Psychoneuroendocrinology, 2018, 87, 74-82.	2.7	18
20	LPS-induced histone H3 phospho(Ser10)-acetylation(Lys14) regulates neuronal and microglial neuroinflammatory response. Brain, Behavior, and Immunity, 2018, 74, 277-290.	4.1	39
21	Hypothalamic expression of inflammatory mediators in an animal model of binge eating. Behavioural Brain Research, 2017, 320, 420-430.	2.2	38
22	Fluoxetine Prevents Aβ1-42-Induced Toxicity via a Paracrine Signaling Mediated by Transforming-Growth-Factor-β1. Frontiers in Pharmacology, 2016, 7, 389.	3.5	42
23	The Proinflammatory Cytokine Interleukin 18 Regulates Feeding by Acting on the Bed Nucleus of the Stria Terminalis. Journal of Neuroscience, 2016, 36, 5170-5180.	3.6	27
24	Disease-Induced Neuroinflammation and Depression. CNS and Neurological Disorders - Drug Targets, 2016, 15, 414-433.	1.4	99
25	P.2.a.012 Co-administration of fluoxetine with acetylsalicylic acid, but not flurbiprofen or celecoxib, for one week shows an antidepressant-like effect. European Neuropsychopharmacology, 2015, 25, S381-S382.	0.7	Ο
26	Successful Treatment of HIV-1 Infection Increases the Expression of a Novel, Short Transcript for IL-18 Receptor α Chain. Journal of Acquired Immune Deficiency Syndromes (1999), 2014, 67, 254-257.	2.1	9
27	Behavioural and transcriptional effects of escitalopram in the chronic escape deficit model of depression. Behavioural Brain Research, 2014, 272, 121-130.	2.2	9
28	Interleukin 18 activates MAPKs and STAT3 but not NF-κB in hippocampal HT-22 cells. Brain, Behavior, and Immunity, 2014, 40, 85-94.	4.1	41
29	Chronic antidepressant treatments resulted in altered expression of genes involved in inflammation in the rat hypothalamus. European Journal of Pharmacology, 2013, 721, 158-167.	3.5	42
30	N-acetyl-cysteine prevents toxic oxidative effects induced by IFN-α in human neurons. International Journal of Neuropsychopharmacology, 2013, 16, 1849-1865.	2.1	26
31	P.2.b.002 Interferon-alpha exposure increases the expression of enzymes of the kynurenine pathway and induces apoptosis in a model of human neurons. European Neuropsychopharmacology, 2012, 22, S242.	0.7	Ο
32	Transcriptional profiles underlying vulnerability and resilience in rats exposed to an acute unavoidable stress. Journal of Neuroscience Research, 2012, 90, 2103-2115.	2.9	16
33	Constitutive and LPS-regulated expression of interleukin-18 receptor beta variants in the mouse brain. Brain, Behavior, and Immunity, 2011, 25, 483-493.	4.1	30
34	Central effects of a local inflammation in three commonly used mouse strains with a different anxious phenotype. Behavioural Brain Research, 2011, 224, 23-34.	2.2	28
35	Stress induces altered CRE/CREB pathway activity and BDNF expression in the hippocampus of glucocorticoid receptor-impaired mice. Neuropharmacology, 2011, 60, 1337-1346.	4.1	70
36	Time-dependent effects of escitalopram on brain derived neurotrophic factor (BDNF) and neuroplasticity related targets in the central nervous system of rats. European Journal of Pharmacology, 2010, 643, 180-187.	3.5	51

CRISTINA BENATTI

#	Article	IF	CITATIONS
37	Early neonatal inflammation affects adult pain reactivity and anxiety related traits in mice: genetic background counts. International Journal of Developmental Neuroscience, 2009, 27, 661-668.	1.6	17
38	P.1.33 Gene expression profile of the hippocampus of a behavioural model of depression. European Neuropsychopharmacology, 2009, 19, S29-S29.	0.7	0
39	P.2.04 Microarray analysis in hippocampus of rats treated with escitalopram in the chronic escape deficit model of depression. European Neuropsychopharmacology, 2009, 19, S36-S37.	0.7	0
40	P.1.03 Molecular effects of subchronic and chronic treatment with escitalopram in the rat central nervous system. European Neuropsychopharmacology, 2008, 18, s4-s5.	0.7	0
41	S.15.03 Combined effect of antidepressant and anti-inflammatory drugs in an animal model of depression. European Neuropsychopharmacology, 2007, 17, S198.	0.7	1
42	P.2.a.014 Rapid effect of escitalopram in a behavioural model of depression: the chronic escape deficit. European Neuropsychopharmacology, 2006, 16, S290.	0.7	1
43	Acetylsalicylic acid accelerates the antidepressant effect of fluoxetine in the chronic escape deficit model of depression. International Clinical Psychopharmacology, 2006, 21, 219-225.	1.7	94
44	Early postnatal chronic inflammation produces long-term changes in pain behavior and N-methyl-D-aspartate receptor subtype gene expression in the central nervous system of adult mice. Journal of Neuroscience Research, 2006, 84, 1789-1798.	2.9	23
45	Detection of levodopa, dopamine and its metabolites in rat striatum dialysates following peripheral administration of I-DOPA prodrugs by mean of HPLC–EC. Journal of Pharmaceutical and Biomedical Analysis, 2005, 36, 1079-1084.	2.8	82