Ying I Wang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7293903/ying-i-wang-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

16
papers995
citations12
h-index17
g-index17
ext. papers1,214
ext. citations7.6
avg, IF4.89
L-index

#	Paper	IF	Citations
16	Additive manufacturing of biodegradable iron-based particle reinforced polylactic acid composite scaffolds for tissue engineering. <i>Journal of Materials Processing Technology</i> , 2021 , 289, 116952	5.3	12
15	Multiorgan microfluidic platform with breathable lung chamber for inhalation or intravenous drug screening and development. <i>Biotechnology and Bioengineering</i> , 2020 , 117, 486-497	4.9	16
14	A Human-Based Functional NMJ System for Personalized ALS Modeling and Drug Testing. <i>Advanced Therapeutics</i> , 2020 , 3, 2000133	4.9	11
13	Strategies for using mathematical modeling approaches to design and interpret multi-organ microphysiological systems (MPS). <i>APL Bioengineering</i> , 2019 , 3, 021501	6.6	22
12	Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	70
11	Piezoelectric BioMEMS Cantilever for Measurement of Muscle Contraction and for Actuation of Mechanosensitive Cells. <i>MRS Communications</i> , 2019 , 9, 1186-1192	2.7	4
10	Recent Advances in Body-on-a-Chip Systems. <i>Analytical Chemistry</i> , 2019 , 91, 330-351	7.8	100
9	Stem cell derived phenotypic human neuromuscular junction model for dose response evaluation of therapeutics. <i>Biomaterials</i> , 2018 , 166, 64-78	15.6	70
8	UniChip enables long-term recirculating unidirectional perfusion with gravity-driven flow for microphysiological systems. <i>Lab on A Chip</i> , 2018 , 18, 2563-2574	7.2	47
7	Investigation of the effect of hepatic metabolism on off-target cardiotoxicity in a multi-organ human-on-a-chip system. <i>Biomaterials</i> , 2018 , 182, 176-190	15.6	93
6	Multiorgan Microphysiological Systems for Drug Development: Strategies, Advances, and Challenges. <i>Advanced Healthcare Materials</i> , 2018 , 7, 1701000	10.1	70
5	Application of chemical reaction engineering principles to body-on-a-chipcsystems. <i>AICHE Journal</i> , 2018 , 64, 4351-4360	3.6	11
4	Self-contained, low-cost Body-on-a-Chip systems for drug development. <i>Experimental Biology and Medicine</i> , 2017 , 242, 1701-1713	3.7	43
3	Microfluidic blood-brain barrier model provides in vivo-like barrier properties for drug permeability screening. <i>Biotechnology and Bioengineering</i> , 2017 , 114, 184-194	4.9	303
2	In Vitro Modeling of Nervous System: Engineering of the Reflex Arc 2016 , 261-298		1
1	Multi-cellular 3D human primary liver cell culture elevates metabolic activity under fluidic flow. <i>Lab on A Chip</i> , 2015 , 15, 2269-77	7.2	121