
Young-Hee Shin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7293461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aminolyses of Aryl Diphenylphosphinates and Diphenylphosphinothioates:Â Effect of Modification of Electrophilic Center from PO to PS. Journal of Organic Chemistry, 2007, 72, 3823-3829.	3.2	105
2	Aminolysis of X-Substituted Phenyl Diphenylphosphinates: Effect of Amine Nature on Reactivity and Transition-State Structure. Journal of Organic Chemistry, 2009, 74, 3073-3078.	3.2	85
3	Aminolysis of Y-Substituted Phenyl Diphenylphosphinates and Benzoates:Â Effect of Modification of Electrophilic Center from CO to PO. Journal of Organic Chemistry, 2006, 71, 7715-7720.	3.2	84
4	Alkali Metal Ion Catalysis and Inhibition in Nucleophilic Displacement Reactions at Phosphorus Centers:  Ethyl and Methyl Paraoxon and Ethyl and Methyl Parathion. Journal of Organic Chemistry, 2008, 73, 923-930.	3.2	53
5	Differential Impact of β and γ Residue Preorganization on α/β/γ-Peptide Helix Stability in Water. Journal of the American Chemical Society, 2013, 135, 8149-8152.	13.7	34
6	A Kinetic Study on Nucleophilic Displacement Reactions of Aryl Benzenesulfonates with Potassium Ethoxide: Role of K ⁺ Ion and Reaction Mechanism Deduced from Analyses of LFERs and Activation Parameters. Journal of Organic Chemistry, 2013, 78, 490-497.	3.2	31
7	Alkaliâ€Metalâ€Ion Catalysis and Inhibition in the Nucleophilic Displacement Reaction of Yâ€Substituted Phenyl Diphenylphosphinates and Diphenylphosphinothioates with Alkaliâ€Metal Ethoxides: Effect of Changing the Electrophilic Center from Pĩ£¾O to Pĩ£¾S. Chemistry - A European Journal, 2012, 18, 961-968.	3.3	28
8	Impact of Backbone Pattern and Residue Substitution on Helicity in α/β/γ-Peptides. Journal of the American Chemical Society, 2018, 140, 1394-1400.	13.7	20
9	Inhibition of ACE2â€Spike Interaction by an ACE2 Binder Suppresses SARS oVâ€2 Entry. Angewandte Chemie International Edition, 2022, 61, .	13.8	19
10	Phenotypic Discovery of Neuroprotective Agents by Regulation of Tau Proteostasis via Stressâ€Responsive Activation of PERK Signaling. Angewandte Chemie - International Edition, 2021, 60, 1831-1838.	13.8	12
11	Readily Accessible and Predictable Naphthaleneâ€Based Twoâ€Photon Fluorophore with Full Visibleâ€Color Coverage. Chemistry - A European Journal, 2016, 22, 14166-14170.	3.3	10
12	Multiparameter kinetic analysis of alkaline hydrolysis of a series of aryl diphenylphosphinothioates: models for P=S neurotoxins. Journal of Physical Organic Chemistry, 2017, 30, e3657.	1.9	7
13	Diverse display of non-covalent interacting elements using pyrimidine-embedded polyheterocycles. Chemical Communications, 2015, 51, 13040-13043.	4.1	6
14	Kinetic Study on Alkaline Hydrolysis of 2â€Pyridyl and 4â€Pyridyl Xâ€substitutedâ€Benzoates: Effects of Benzoyl Substituent X and Leavingâ€Group Basicity on Reactivity and Reaction Mechanism. Bulletin of the Korean Chemical Society, 2017, 38, 1138-1142.	1.9	4
15	Medium effect on the α-effect for nucleophilic substitution reactions of <i>p</i> -nitrophenyl acetate with benzohydroxamates and <i>m</i> -chlorophenoxide in DMSO–H ₂ O mixtures as contrasts with MeCN–H ₂ O mixtures: comparing two very different polar aprotic solvent components. Canadian lournal of Chemistry. 2018. 96. 922-928.	1.1	3
16	Exploration of $\hat{I} \pm \hat{I}^2 \hat{I}^3$ -peptidomimetics design for BH3 helical domains. Chemical Communications, 2022, 58, 945-948.	4.1	3
17	Alkaline Hydrolysis of 4â€Nitrophenyl Xâ€Substitutedâ€Benzoates Revisited: New Insights from Yukawa–Tsuno Equation. Bulletin of the Korean Chemical Society, 2016, 37, 2062-2065.	1.9	1
18	Phenotype-Based High-Content Screening Using Fluorescent Chemical Bioprobes: Lipid Droplets and Glucose Uptake Quantification in Live Cells. Methods in Molecular Biology, 2018, 1787, 223-234.	0.9	1

#	Article	IF	CITATIONS
19	Phenotypic Discovery of Neuroprotective Agents by Regulation of Tau Proteostasis via Stressâ€Responsive Activation of PERK Signaling. Angewandte Chemie, 2021, 133, 1859-1866.	2.0	0
20	Innentitelbild: Phenotypic Discovery of Neuroprotective Agents by Regulation of Tau Proteostasis via Stressâ€Responsive Activation of PERK Signaling (Angew. Chem. 4/2021). Angewandte Chemie, 2021, 133, 1686-1686.	2.0	0
21	Inhibition of ACE2â€Spike Interaction by an ACE2 Binder Suppresses SARSâ€CoVâ€2 Entry. Angewandte Chemie, 0, , .	2.0	Ο