## Alessandra Castegna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7293446/publications.pdf Version: 2024-02-01



ALESSANDRA CASTECNA

| #  | Article                                                                                                                                                                                                                                           | IF             | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|
| 1  | The Metabolic Signature of Macrophage Responses. Frontiers in Immunology, 2019, 10, 1462.                                                                                                                                                         | 4.8            | 1,083     |
| 2  | Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid β-peptide. Trends in<br>Molecular Medicine, 2001, 7, 548-554.                                                                                                 | 6.7            | 1,044     |
| 3  | Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease<br>brain contribute to neuronal death1. Neurobiology of Aging, 2002, 23, 655-664.                                                           | 3.1            | 628       |
| 4  | Proteomic identification of oxidatively modified proteins in alzheimer's disease brain. part I: creatine<br>kinase BB, glutamine synthase, and ubiquitin carboxy-terminal hydrolase L-1. Free Radical Biology and<br>Medicine, 2002, 33, 562-571. | 2.9            | 545       |
| 5  | Proteomic identification of oxidatively modified proteins in Alzheimer's disease brain. Part II:<br>dihydropyrimidinaseâ€related protein 2, αâ€enolase and heat shock cognate 71. Journal of Neurochemistry<br>2002, 82, 1524-1532.               | y,3 <b>.</b> 9 | 528       |
| 6  | Proteomic identification of nitrated proteins in Alzheimer's disease brain. Journal of Neurochemistry, 2003, 85, 1394-1401.                                                                                                                       | 3.9            | 514       |
| 7  | Nutritional approaches to combat oxidative stress in Alzheimer's disease. Journal of Nutritional<br>Biochemistry, 2002, 13, 444-461.                                                                                                              | 4.2            | 343       |
| 8  | UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation.<br>Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 960-965.                                           | 7.1            | 322       |
| 9  | Pharmacologic or Genetic Targeting of Glutamine Synthetase Skews Macrophages toward an M1-like<br>Phenotype and Inhibits Tumor Metastasis. Cell Reports, 2017, 20, 1654-1666.                                                                     | 6.4            | 258       |
| 10 | Identification of the Mitochondrial NAD+ Transporter in Saccharomyces cerevisiae. Journal of<br>Biological Chemistry, 2006, 281, 1524-1531.                                                                                                       | 3.4            | 215       |
| 11 | Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Molecular<br>Genetics and Metabolism, 2013, 110, 25-34.                                                                                                         | 1.1            | 203       |
| 12 | Proteomics in Alzheimer's disease: insights into potential mechanisms of neurodegeneration. Journal of Neurochemistry, 2003, 86, 1313-1327.                                                                                                       | 3.9            | 171       |
| 13 | Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience, 2004, 126, 915-926.                                                                   | 2.3            | 148       |
| 14 | Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of<br>reconstituted recombinant proteins. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757,<br>1249-1262.                                        | 1.0            | 147       |
| 15 | Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality,<br>CNS malformations, and anemia. Proceedings of the National Academy of Sciences of the United States<br>of America, 2006, 103, 15927-15932.    | 7.1            | 147       |
| 16 | Proteomic identification of proteins oxidized by Aβ(1–42) in synaptosomes: Implications for Alzheimer's<br>disease. Brain Research, 2005, 1044, 206-215.                                                                                          | 2.2            | 137       |
| 17 | Vitamin E and Neurodegenerative Disorders Associated with Oxidative Stress. Nutritional Neuroscience, 2002, 5, 229-239.                                                                                                                           | 3.1            | 136       |
| 18 | Reactive Oxygen Species in Macrophages: Sources and Targets. Frontiers in Immunology, 2021, 12, 734229.                                                                                                                                           | 4.8            | 134       |

| #  | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down's syndrome. Molecular Genetics and Metabolism, 2011, 102, 378-382.                                                                                                        | 1.1 | 119       |
| 20 | Redox proteomics identification of oxidatively modified brain proteins in inherited Alzheimer's disease: An initial assessment. Journal of Alzheimer's Disease, 2006, 10, 391-397.                                                                                           | 2.6 | 107       |
| 21 | Identification and Functional Characterization of a Novel Mitochondrial Carrier for Citrate and<br>Oxoglutarate in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2010, 285, 17359-17370.                                                                        | 3.4 | 107       |
| 22 | Modulation of phospholipid asymmetry in synaptosomal membranes by the lipid peroxidation products,<br>4-hydroxynonenal and acrolein: implications for Alzheimer's disease. Brain Research, 2004, 1004,<br>193-197.                                                           | 2.2 | 102       |
| 23 | Proteomic analysis of brain proteins in the gracile axonal dystrophy ( <i>gad</i> ) mouse, a syndrome<br>that emanates from dysfunctional ubiquitin carboxylâ€terminal hydrolase Lâ€1, reveals oxidation of key<br>proteins. Journal of Neurochemistry, 2004, 88, 1540-1546. | 3.9 | 89        |
| 24 | Acetylation of human mitochondrial citrate carrier modulates mitochondrial citrate/malate<br>exchange activity to sustain NADPH production during macrophage activation. Biochimica Et<br>Biophysica Acta - Bioenergetics, 2015, 1847, 729-738.                              | 1.0 | 79        |
| 25 | Metabolism and <scp>TAM</scp> functions—it takes two to tango. FEBS Journal, 2018, 285, 700-716.                                                                                                                                                                             | 4.7 | 73        |
| 26 | The mitochondrial side of epigenetics. Physiological Genomics, 2015, 47, 299-307.                                                                                                                                                                                            | 2.3 | 72        |
| 27 | 4-Hydroxynonenal oxidatively modifies histones: implications for Alzheimer's disease. Neuroscience<br>Letters, 2004, 356, 155-158.                                                                                                                                           | 2.1 | 68        |
| 28 | The Crowded Crosstalk between Cancer Cells and Stromal Microenvironment in Gynecological<br>Malignancies: Biological Pathways and Therapeutic Implication. International Journal of Molecular<br>Sciences, 2019, 20, 2401.                                                   | 4.1 | 67        |
| 29 | Oxidative stress and reduced glutamine synthetase activity in the absence of inflammation in the cortex of mice with experimental allergic encephalomyelitis. Neuroscience, 2011, 185, 97-105.                                                                               | 2.3 | 61        |
| 30 | Blockade of Glutamine Synthetase Enhances Inflammatory Response in Microglial Cells. Antioxidants and Redox Signaling, 2017, 26, 351-363.                                                                                                                                    | 5.4 | 61        |
| 31 | Hyperhomocysteinemia: Related genetic diseases and congenital defects, abnormal DNA methylation and newborn screening issues. Molecular Genetics and Metabolism, 2014, 113, 27-33.                                                                                           | 1.1 | 53        |
| 32 | Proteomics for the identification of specifically oxidized proteins in brain: Technology and application to the study of neurodegenerative disorders. Amino Acids, 2003, 25, 419-425.                                                                                        | 2.7 | 48        |
| 33 | Pharmacological targets of metabolism in disease: Opportunities from macrophages. , 2020, 210, 107521.                                                                                                                                                                       |     | 45        |
| 34 | Glutamine Synthetase: Localization Dictates Outcome. Genes, 2018, 9, 108.                                                                                                                                                                                                    | 2.4 | 44        |
| 35 | Molecular identification and functional characterization of a novel glutamate transporter in yeast<br>and plant mitochondria. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 1249-1258.<br>                                                                      | 1.0 | 39        |
| 36 | Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize. Functional and Integrative Genomics, 2012, 12, 317-326.                                                                                                                             | 3.5 | 37        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | SLC25A10 biallelic mutations in intractable epileptic encephalopathy with complex I deficiency. Human<br>Molecular Genetics, 2018, 27, 499-504.                                                                                                   | 2.9  | 37        |
| 38 | <i><scp>SLC</scp>25A26</i> overexpression impairs cell function via mt <scp>DNA</scp><br>hypermethylation and rewiring of methyl metabolism. FEBS Journal, 2017, 284, 967-984.                                                                    | 4.7  | 33        |
| 39 | Role of FOXA in mitochondrial citrate carrier gene expression and insulin secretion. Biochemical and Biophysical Research Communications, 2009, 385, 220-224.                                                                                     | 2.1  | 32        |
| 40 | Identification of Mitochondrial Coenzyme A Transporters from Maize and Arabidopsis  Â. Plant<br>Physiology, 2013, 162, 581-588.                                                                                                                   | 4.8  | 31        |
| 41 | Glutamine synthetase desensitizes differentiated adipocytes to proinflammatory stimuli by raising intracellular glutamine levels. FEBS Letters, 2014, 588, 4807-4814.                                                                             | 2.8  | 31        |
| 42 | Targeting monoamine oxidase to dampen NLRP3 inflammasome activation in inflammation. Cellular and<br>Molecular Immunology, 2021, 18, 1311-1313.                                                                                                   | 10.5 | 31        |
| 43 | Derivatives of Xanthic Acid are Novel Antioxidants: Application to Synaptosomes. Free Radical Research, 2003, 37, 355-365.                                                                                                                        | 3.3  | 30        |
| 44 | Glufosinate constrains synchronous and metachronous metastasis by promoting antiâ€ŧumor<br>macrophages. EMBO Molecular Medicine, 2020, 12, e11210.                                                                                                | 6.9  | 29        |
| 45 | The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction. PLoS ONE, 2016, 11, e0152181.                                                                                       | 2.5  | 23        |
| 46 | The Saccharomyces cerevisiae gene YPR011c encodes a mitochondrial transporter of adenosine<br>5′-phosphosulfate and 3′-phospho-adenosine 5′-phosphosulfate. Biochimica Et Biophysica Acta -<br>Bioenergetics, 2014, 1837, 326-334.                | 1.0  | 22        |
| 47 | Down-regulation of the mitochondrial aspartate-glutamate carrier isoform 1 AGC1 inhibits<br>proliferation and N-acetylaspartate synthesis in Neuro2A cells. Biochimica Et Biophysica Acta -<br>Molecular Basis of Disease, 2017, 1863, 1422-1435. | 3.8  | 22        |
| 48 | <i>N</i> â€acetylaspartate release by glutaminolytic ovarian cancer cells sustains protumoral macrophages. EMBO Reports, 2021, 22, e51981.                                                                                                        | 4.5  | 22        |
| 49 | Clinical implications from proteomic studies in neurodegenerative diseases: lessons from mitochondrial proteins. Expert Review of Proteomics, 2016, 13, 259-274.                                                                                  | 3.0  | 20        |
| 50 | Monoamine oxidase-dependent histamine catabolism accounts for post-ischemic cardiac redox<br>imbalance and injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 3050-3059.                                             | 3.8  | 18        |
| 51 | The dominant-negative mitochondrial calcium uniporter subunit MCUb drives macrophage polarization during skeletal muscle regeneration. Science Signaling, 2021, 14, eabf3838.                                                                     | 3.6  | 17        |
| 52 | Mitochondrial carriers in inflammation induced by bacterial endotoxin and cytokines. Biological Chemistry, 2017, 398, 303-317.                                                                                                                    | 2.5  | 13        |
| 53 | Differential Expression of ADP/ATP Carriers as a Biomarker of Metabolic Remodeling and Survival in<br>Kidney Cancers. Biomolecules, 2021, 11, 38.                                                                                                 | 4.0  | 12        |
| 54 | Metabolic Features of Brain Function with Relevance to Clinical Features of Alzheimer and Parkinson<br>Diseases. Molecules, 2022, 27, 951.                                                                                                        | 3.8  | 12        |

| #  | Article                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Impact of Immunometabolism on Cancer Metastasis: A Focus on T Cells and Macrophages. Cold Spring<br>Harbor Perspectives in Medicine, 2020, 10, a037044.                       | 6.2  | 10        |
| 56 | Tumor growth of neurofibromin-deficient cells is driven by decreased respiration and hampered by NAD+ and SIRT3. Cell Death and Differentiation, 2022, 29, 1996-2008.         | 11.2 | 8         |
| 57 | The J2-Immortalized Murine Macrophage Cell Line Displays Phenotypical and Metabolic Features of Primary BMDMs in Their M1 and M2 Polarization State. Cancers, 2021, 13, 5478. | 3.7  | 6         |
| 58 | PNC2 ( <i>SLC25A36)</i> Deficiency Associated With the Hyperinsulinism/Hyperammonemia Syndrome.<br>Journal of Clinical Endocrinology and Metabolism, 2021, , .                | 3.6  | 5         |
| 59 | Editorial: Metabolism Meets Function: Untangling the Cross-Talk Between Signaling and Metabolism.<br>Frontiers in Oncology, 2020, 10, 607511.                                 | 2.8  | 3         |
| 60 | UCP2 exports C4 metabolites out of mitochondria in exchange for phosphate. Biochimica Et Biophysica<br>Acta - Bioenergetics, 2014, 1837, e33.                                 | 1.0  | 0         |