
Mo Samimy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7293105/publications.pdf Version: 2024-02-01

MO SAMIMY

#	Article	IF	CITATIONS
1	An experimental investigation of deep dynamic stall control using plasma actuators. Experiments in Fluids, 2022, 63, 1.	2.4	8
2	The Effects of Active Control on Near-Field Pressure Fluctuations in Supersonic Rectangular Twin Jets. , 2022, , .		8
3	Intermittent modal coupling in screeching underexpanded circular twin jets. Journal of Fluid Mechanics, 2021, 910, .	3.4	15
4	Towards large-eddy simulations of supersonic jets from twin rectangular nozzle with plasma actuation. , 2021, , .		2
5	Control of Coupling in Twin Rectangular Supersonic Jets. , 2021, , .		2
6	Aggressively-Offset Inlet Flow Facility Design and Characterization. , 2020, , .		0
7	Control of Dynamic Stall over a NACA 0012 Airfoil Using NS-DBD Plasma Actuators. , 2020, , .		1
8	Flow Separation Control over a Thin Post-Stall Airfoil: Effects of Excitation Frequency. AIAA Journal, 2019, 57, 1826-1838.	2.6	8
9	Reinventing the wheel: excitation of flow instabilities for active flow control using plasma actuators. Journal Physics D: Applied Physics, 2019, 52, 354002.	2.8	28
10	Excitation of Free Shear-Layer Instabilities for High-Speed Flow Control. AIAA Journal, 2018, 56, 1770-1791.	2.6	41
11	Near-field pressure waveform analysis of an excited Mach 0.9 jet. International Journal of Aeroacoustics, 2018, 17, 114-134.	1.3	1
12	Vortex dynamics and sound emission in excitedÂhigh-speed jets. Journal of Fluid Mechanics, 2018, 839, 313-347.	3.4	15
13	Control of Dynamic Stall over a NACA 0015 Airfoil Using Plasma Actuators. AIAA Journal, 2018, 56, 78-89.	2.6	42
14	Stall cell formation over a post-stall airfoil: effects of active perturbations using plasma actuators. Experiments in Fluids, 2018, 59, 1.	2.4	8
15	Unsteady Flow Separation Control over a NACA 0015 using NS-DBD Plasma Actuators. , 2017, , .		4
16	An Investigation of Effects of Jet Temperature on Twin-Jet Flow and Acoustic Fields. , 2017, , .		1
17	Stall Cell Formation over a Boeing Vertol VR-7 Airfoil. , 2017, , .		1
18	Effects of excitation around jet preferred mode Strouhal number in high-speed jets. Experiments in Fluids, 2017, 58, 1.	2.4	17

#	Article	IF	CITATIONS
19	Control of Supersonic Cavity Flow Using Plasma Actuators. AIAA Journal, 2017, 55, 3346-3355.	2.6	51
20	Exploring Physics and Control of Twin Supersonic Circular Jets. AIAA Journal, 2017, 55, 68-85.	2.6	44
21	Identification of the acoustic response in the irrotational near-field of an excited subsonic jet. International Journal of Aeroacoustics, 2016, 15, 496-514.	1.3	6
22	Vortex Dynamics and Sound Emission in an Excited High-Speed Jet. , 2016, , .		4
23	Coupling Dynamics of Twin Supersonic Round Jets. , 2016, , .		Ο
24	An Investigation of Twin Supersonic Jet Coupling. , 2016, , .		2
25	Control of a Non-Resonating Supersonic Cavity Using Plasma Actuators. , 2016, , .		3
26	Flow Separation Control over a Boeing Vertol VR-7 using NS-DBD Plasma Actuators. , 2016, , .		8
27	Flow Control over an Airfoil in Fully Reversed Condition Using Plasma Actuators. AIAA Journal, 2016, 54, 141-149.	2.6	18
28	An Investigation of Twin Supersonic Jets' Near-field. , 2015, , .		4
29	A Study of the Noise Source Mechanisms in an Excited Mach 0.9 Jet - Complementary Experimental and Computational Analysis. , 2015, , .		0
30	Near-Field and Acoustic Far-Field Response of a High-Speed Jet to Excitation. AIAA Journal, 2015, 53, 1894-1909.	2.6	19
31	Decomposition of the Near-Field Pressure in an Excited Subsonic Jet. , 2014, , .		9
32	Control of High Subsonic Cavity Flow Using Plasma Actuators. AIAA Journal, 2014, 52, 1542-1554.	2.6	37
33	Near-field Pressure and Far-field Acoustic Response of Forced High-Speed Jets. , 2014, , .		2
34	Reduced-order modeling of high-speed jets controlled by arc filament plasma actuators. Experiments in Fluids, 2013, 54, 1.	2.4	0
35	Intermittent Nature of Subsonic Jet Noise. AIAA Journal, 2013, 51, 1142-1155.	2.6	53
36	Control of oblique shock wave/boundary layer interactions using plasma actuators. Experiments in Fluids, 2013, 54, 1.	2.4	102

#	Article	IF	CITATIONS
37	An Investigation of the Irrotational Near Field of an Excited High-Speed Jet. , 2013, , .		3
38	Time-Domain Analysis of Excited Subsonic Jet Noise. International Journal of Aeroacoustics, 2013, 12, 387-421.	1.3	3
39	Control of High Subsonic Cavity Flow Using Plasma Actuators. , 2013, , .		5
40	Correlation of Irrotational Near-Field Pressure and Far-Field Acoustic in Forced High-Speed Jets. , 2013, , .		5
41	The Impulse Response of a High-Speed Jet Forced with Localized Arc Filament Plasma Actuators. , 2012, , .		3
42	Time-Domain Analysis of Excited Subsonic Jet Noise. , 2012, , .		0
43	Time-Domain Analysis of Subsonic Jet Noise. , 2012, , .		2
44	High-Speed and High-Reynolds-Number Jet Control Using Localized Arc Filament Plasma Actuators. Journal of Propulsion and Power, 2012, 28, 269-280.	2.2	101
45	The impulse response of a high-speed jet forced with localized arc filament plasma actuators. Physics of Fluids, 2012, 24, .	4.0	46
46	Control of a Supersonic Rectangular Jet Using Plasma Actuators. , 2012, , .		8
47	Separation Control with Nanosecond-Pulse-Driven Dielectric Barrier Discharge Plasma Actuators. AIAA Journal, 2012, 50, 350-365.	2.6	288
48	Nanosecond Pulse Surface Discharges for High-Speed Flow Control. , 2012, , .		42
49	Preliminary Results on Shock Wave/Boundary Layer Interaction Control Using Localized Arc Filament Plasma Actuators. , 2011, , .		16
50	High Speed and High Reynolds Number Jet Control Using Arc Filament Plasma Actuators for Noise Mitigation and for Flow and Noise Diagnostics. , 2011, , .		8
51	Flow Separation Control over an Airfoil with Nanosecond Pulse Driven DBD Plasma Actuators. , 2011, , .		47
52	Effects of Ring Groove and Duty Cycle on Plasma Actuator Performance in High Speed Jets. , 2011, , .		4
53	Noise Control of a High Reynolds Number High Speed Heated Jet Using Plasma Actuators. International Journal of Aeroacoustics, 2011, 10, 635-658.	1.3	43
54	A study of Mach wave radiation using active control. Journal of Fluid Mechanics, 2011, 681, 261-292.	3.4	46

Μο δαμιμύ

#	Article	IF	CITATIONS
55	Flow Separation Control Using Nanosecond Pulse Driven DBD Plasma Actuators. International Journal of Flow Control, 2011, 3, 213-232.	0.4	86
56	On factors influencing arc filament plasma actuator performance in control of high speed jets. Experiments in Fluids, 2011, 51, 1591-1603.	2.4	46
57	A Study of Mach Wave Radiation in an Axisymmetric Jet Using Active Control. , 2011, , .		2
58	Development of Empirical Estimators for Feedback Control of High-Speed Axisymmetric Jets. AIAA Journal, 2011, 49, 1971-1987.	2.6	8
59	Incorporating Actuation Effects in Reduced-Order Models for Feedback Control of Axisymmetric Jets. , 2011, , .		1
60	Coherent structures in plasma-actuator controlled supersonic jets: Axisymmetric and mixed azimuthal modes. Physics of Fluids, 2011, 23, .	4.0	88
61	Acoustic and flow fields of an excited high Reynolds number axisymmetric supersonic jet. Journal of Fluid Mechanics, 2010, 656, 507-529.	3.4	83
62	High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator. Experiments in Fluids, 2010, 48, 521-537.	2.4	125
63	Development of localized arc filament RF plasma actuators for high-speed and high Reynolds number flow control. Experiments in Fluids, 2010, 49, 497-511.	2.4	47
64	Extremizing Feedback Control of a High-Speed and High Reynolds Number Jet. AIAA Journal, 2010, 48, 387-399.	2.6	34
65	High-Lift Airfoil Separation with Dielectric Barrier Discharge Plasma Actuation. AIAA Journal, 2010, 48, 2884-2898.	2.6	96
66	Control of Separation from the Flap of a High-Lift Airfoil with DBD Plasma Actuation. , 2010, , .		2
67	Noise Control of High Reynolds Number Mach 1.3 Heated Jet Using Plasma Actuators. , 2010, , .		10
68	High Lift Airfoil Leading Edge Separation Control with Nanosecond Pulse DBD Plasma Actuators. , 2010, , .		33
69	Effect of plasma-based azimuthal mode excitation on supersonic jet flow. , 2010, , .		14
70	Flow Control of a High Reynolds Number Mach 1.3 Heated Jet Using Plasma Actuators. , 2010, , .		10
71	Development of Empirical Reduced-Order Models for Feedback Control of Axisymmetric Jets. , 2010, , .		4
72	Initial Development of Reduced-Order Models for Feedback Control of Axisymmetric Jets. International Journal of Flow Control, 2010, 2, 39-60.	0.4	14

#	Article	IF	CITATIONS
73	Active Control of a High Reynolds Number Mach 0.9 Axisymmetric Jet. AIAA Journal, 2009, 47, 116-128.	2.6	82
74	Active Control of Noise in Supersonic Jets Using Plasma Actuators. , 2009, , .		7
75	Control of a high Reynolds number Mach 0.9 heated jet using plasma actuators. Physics of Fluids, 2009, 21, .	4.0	66
76	Extremum-Seeking Control of Subsonic Cavity Flow. AIAA Journal, 2009, 47, 195-205.	2.6	34
77	Plasma assisted ignition and high-speed flow control: non-thermal and thermal effects. Plasma Sources Science and Technology, 2009, 18, 034018.	3.1	238
78	Separation Control from the Flap of a High-Lift Airfoil Using DBD Plasma Actuators. , 2009, , .		10
79	Active Noise Control in Jets from Conical and Contoured Supersonic Nozzles with Plasma Actuators. , 2009, , .		4
80	Noise Control of a High Reynolds Number Mach 0.9 Heated Jet Using Plasma Actuators. , 2009, , .		10
81	On the Development of Localized Arc Filament Plasma Actuators for High Speed Flow Control. , 2009, ,		6
82	Extremizing Feedback Control of a High-Speed and High-Reynolds-Number Jet. , 2009, , .		2
83	Supersonic Inlet Flow Control Using Plasma Actuators. , 2009, , .		27
84	A Study of the Correlation of Large-Scale Structure Dynamics and Far-Field Radiated Noise in an Excited Mach 0.9 Jet. International Journal of Aeroacoustics, 2009, 8, 231-259.	1.3	18
85	Effects of Active Control on the Flow Structure in a High Reynolds Number Supersonic Jet. International Journal of Flow Control, 2009, 1, 99-117.	0.4	15
86	Towards Feedback Control of High-Speed and High-Reynolds-Number Jets. , 2008, , .		0
87	Control of a Heated High Reynolds Number Mach 0.9 Jet Using Plasma Actuators. , 2008, , .		2
88	Effects of Active Control on the Flow Structure of Flow in a High Reynolds Number Supersonic Jet. , 2008, , .		0
89	Active Control of Supersonic Jets Operating in Various Flow Regimes. , 2008, , .		2
90	Toward Better Understanding of Far-field Radiated Noise Mechanisms in a High Reynolds Number Mach		2

0.9 Axisymmetric Jet. , 2008, , .

#	Article	IF	CITATIONS
91	Control Input Separation Methods for Reduced-Order Model-Based Feedback Flow Control. AIAA Journal, 2008, 46, 2306-2322.	2.6	19
92	Dynamic Compensation of a Synthetic Jetlike Actuator for Closed-Loop Cavity Flow Control. AIAA Journal, 2008, 46, 232-240.	2.6	5
93	Control input separation methods applied to cavity flow. , 2008, , .		2
94	Active Control of a Mach 0.9 Jet for Noise Mitigation Using Plasma Actuators. AIAA Journal, 2007, 45, 890-901.	2.6	188
95	Active Control of High Subsonic Jets. , 2007, , .		12
96	Noise Mitigation in High Speed and High Reynolds Number Jets Using Plasma Actuators. , 2007, , .		6
97	Characterization of Localized Arc Filament Plasma Actuators Used for High-speed Flow Control. , 2007, , .		5
98	Correlation of Large-Scale Structure Dynamics and Far-Field Radiated Noise in a Mach 0.9 Jet. , 2007, , .		1
99	Development and use of localized arc filament plasma actuators for high-speed flow control. Journal Physics D: Applied Physics, 2007, 40, 685-694.	2.8	189
100	Feedback control of subsonic cavity flows using reduced-order models. Journal of Fluid Mechanics, 2007, 579, 315-346.	3.4	105
101	Active control of high-speed and high-Reynolds-number jets using plasma actuators. Journal of Fluid Mechanics, 2007, 578, 305-330.	3.4	370
102	Noise Sources in Controlled High Reynolds Number and High Speed Jets. , 2006, , .		3
103	Toward Noise Mitigation in High Speed and High Reynolds Number Jets Using Plasma Actuators. , 2006, ,		4
104	Flow and Noise Control in High Speed and High Reynolds Number Jets Using Plasma Actuators. , 2006, , .		13
105	Active Control of High Speed and High Reynolds Number Free Jets Using Plasma Actuators. , 2006, , .		25
106	Experimental Results and Bifurcation Analysis on Scaled Feedback Control for Subsonic Cavity Flows. , 2006, , .		3
107	Comparison of Noise Mechanisms in High and Low Reynolds Number High-Speed Jets. AIAA Journal, 2006, 44, 2251-2258.	2.6	46
108	Reduced-Order Modeling and Control for Subsonic Cavity Flows. , 2006, , .		1

Reduced-Order Modeling and Control for Subsonic Cavity Flows. , 2006, , . 108

Μο δαμιμυ

#	Article	IF	CITATIONS
109	Mach Number Effects on Jet Noise Sources and Radiation to Shallow Angles. AIAA Journal, 2006, 44, 1915-1918.	2.6	11
110	Experimental Study of Linear Closed-Loop Control of Subsonic Cavity Flow. AIAA Journal, 2006, 44, 929-938.	2.6	31
111	Development of Megahertz-Rate Planar Doppler Velocimetry for High Speed Flows. AIAA Journal, 2005, 43, 500-511.	2.6	52
112	Infinite dimensional and reduced order observers for Burgers equation. International Journal of Control, 2005, 78, 864-874.	1.9	7
113	Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. Journal of Fluid Mechanics, 2005, 544, 277.	3.4	159
114	Comparison of Noise Sources in High and Low Reynolds Number High Speed Jets. , 2005, , .		3
115	Logic-Based Active Control of Subsonic Cavity Flow Resonance. AIAA Journal, 2004, 42, 1901-1909.	2.6	45
116	Development and characterization of plasma actuators for high-speed jet control. Experiments in Fluids, 2004, 37, 577-588.	2.4	237
117	Laser Doppler velocity bias in separated turbulent flows. Experiments in Fluids, 2004, 6, 80-88.	2.4	35
118	Development and evaluation of a 3-D microphone array to locate individual acoustic sources in a high-speed jet. Journal of Sound and Vibration, 2004, 276, 649-669.	3.9	31
119	Exploring High-Speed Axisymmetric Jet Noise Control Using Hartmann Tube Fluidic Actuators. , 2004, , .		23
120	Active Control of High Speed Jets Using Localized Arc Filament Plasma Actuators. , 2004, , .		15
121	Application of Proper Orthogonal Decomposition to a Supersonic Axisymmetric Jet. AIAA Journal, 2003, 41, 866-877.	2.6	19
122	Effects of Vortex Generating Tabs on Noise Sources in an Ideally Expanded Mach 1.3 Jet. International Journal of Aeroacoustics, 2003, 2, 35-63.	1.3	27
123	Development and Characterization of Hartmann Tube Fluidic Actuators for High-Speed Flow Control. AIAA Journal, 2002, 40, 1926-1934.	2.6	87
124	Acoustic source localization using a 3-D microphone array in a Mach 1.3 jet. , 2002, , .		9
125	Development and characterization of Hartmann Tube based fluidic actuators for high-speed flow control. , 2002, , .		11
126	Exploring Noise Sources Using Simultaneous Acoustic Measurements and Real-Time Flow Visualizations in Jets. AIAA Journal, 2002, 40, 2382-2392.	2.6	29

#	Article	IF	CITATIONS
127	Molecular tagging velocimetry measurements in supersonic microjets. AIAA Journal, 2002, 40, 1065-1070.	2.6	11
128	Development and characterization of Hartmann tube fluidic actuators for high-speed flow control. AIAA Journal, 2002, 40, 1926-1934.	2.6	5
129	Turbulence Structures and the Acoustic Far Field of a Mach 1.3 Jet. AIAA Journal, 2001, 39, 1716-1727.	2.6	49
130	Effects of Nozzle Trailing Edges on Acoustic Field of Supersonic Rectangular Jet. AIAA Journal, 2001, 39, 1065-1070.	2.6	57
131	Effects of nozzle trailing edges on acoustic field of supersonic rectangular jet. AIAA Journal, 2001, 39, 1065-1070.	2.6	9
132	Review of planar multiple-component velocimetry in high-speed Flows. AIAA Journal, 2000, 38, 553-574.	2.6	6
133	On mixing enhancement via nozzle trailing-edge modifications in high-speed jets. AIAA Journal, 2000, 38, 935-937.	2.6	3
134	Mixing enhancement via nozzle trailing edge modifications in a high speed rectangular jet. Physics of Fluids, 1999, 11, 2731-2742.	4.0	69
135	Planar Doppler velocimetry - Three-component velocimetry in supersonic jets. AIAA Journal, 1999, 37, 700-707.	2.6	1
136	Two-component planar Doppler velocimetry in the compressible turbulent boundary layer. Experiments in Fluids, 1998, 24, 323-332.	2.4	13
137	The effects of expansion on the turbulence structure of compressible boundary layers. Journal of Fluid Mechanics, 1998, 367, 67-105.	3.4	54
138	Passive control of supersonic rectangular jets via nozzle trailing-edge modifications. AIAA Journal, 1998, 36, 1230-1239.	2.6	4
139	Lobed Mixers Using Simultaneous Laser-Induced Fluorescence and Mie Scattering. Journal of Propulsion and Power, 1997, 13, 445-448.	2.2	2
140	Mixing processes in a coaxial geometry with a central lobed mixer-nozzle. AIAA Journal, 1997, 35, 838-841.	2.6	4
141	Two-component planar Doppler velocimetry in high speed flows. AIAA Journal, 1997, 35, 1729-1738.	2.6	4
142	The evolution of a jet with vortex-generating tabs: real-time visualization and quantitative measurements. Journal of Fluid Mechanics, 1996, 311, 73.	3.4	170
143	Dual stream axisymmetric mixing in the presence of axial vorticity. Journal of Propulsion and Power, 1996, 12, 178-185.	2.2	19
144	Investigation of the effect of tabs on supersonic jets using advanced diagnostics. Journal of Propulsion and Power, 1996, 12, 742-751.	2.2	7

Μο δαμιμυ

#	Article	IF	CITATIONS
145	Effects of nozzle geometry on parallel injection into a supersonic flow. Journal of Propulsion and Power, 1996, 12, 1159-1168.	2.2	11
146	Rayleigh scattering technique for simultaneous measurements of velocity and thermodynamic properties. AIAA Journal, 1996, 34, 2346-2352.	2.6	32
147	The characteristics and evolution of largeâ€scale structures in compressible mixing layers. Physics of Fluids, 1995, 7, 864-876.	4.0	87
148	Structure of Supersonic Turbulent Boundary Layer After Expansion Regions. AIAA Journal, 1995, 33, 430-438.	2.6	54
149	Effects of expansions on a supersonic boundary layer - Surface pressure measurements. AIAA Journal, 1994, 32, 2169-2177.	2.6	28
150	Streamwise structures in a turbulent supersonic boundary layer. Physics of Fluids, 1994, 6, 1081-1083.	4.0	23
151	Control of an axisymmetric jet using vortex generators. Physics of Fluids, 1994, 6, 778-793.	4.0	387
152	Dispersion of solid particles in compressible mixing layers. Journal of Propulsion and Power, 1993, 9, 83-89.	2.2	16
153	On streamwise vortices in high Reynolds number supersonic axisymmetric jets. Physics of Fluids A, Fluid Dynamics, 1993, 5, 187-202.	1.6	43
154	Effect of tabs on the flow and noise field of an axisymmetric jet. AIAA Journal, 1993, 31, 609-619.	2.6	317
155	Compressibility effects on large structures in free shear flows. Physics of Fluids A, Fluid Dynamics, 1992, 4, 1251-1258.	1.6	80
156	Study of compressible mixing layers using filtered Rayleigh scattering based visualizations. AIAA Journal, 1992, 30, 2567-2569.	2.6	71
157	Motion of particles with inertia in a compressible free shear layer. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1915-1923.	1.6	411
158	Compressibility effects in free shear layers. Physics of Fluids A, Fluid Dynamics, 1990, 2, 1231-1240.	1.6	217
159	Structure of a reattaching supersonic shear layer. AIAA Journal, 1990, 28, 969-970.	2.6	2
160	Nonaxisymmetric instabilities in a dump combustor with a swirling inlet flow. Journal of Propulsion and Power, 1990, 6, 78-84.	2.2	4
161	Effects of compressibility on the characteristics of free shear layers. AIAA Journal, 1990, 28, 439-445.	2.6	214
162	Application of Laser Velocimetry for Characterization of Confined Swirling Flow. Journal of Engineering for Gas Turbines and Power, 1989, 111, 36-45.	1.1	40

Μο δαμιμυ

#	Article	IF	CITATIONS
163	Performance of laser Doppler velocimeter with polydisperse seed particles in high-speed flows. Journal of Propulsion and Power, 1989, 5, 21-25.	2.2	8
164	Experimental study of isothermal swirling flows in a dump combustor. AIAA Journal, 1988, 26, 1442-1449.	2.6	19
165	The Fluid Dynamics of Safety Valve Vent Stacks. Journal of Fluids Engineering, Transactions of the ASME, 1985, 107, 397-401.	1.5	Ο
166	A MHz rate imaging system for study of turbulent and time evolving high speed flows. , 0, , .		3
167	Recent enhancements to the OSU burst mode laser and MHz rate imaging systems. , 0, , .		0
168	Modeling of subsonic cavity flows by neural networks. , 0, , .		7