Alexander Deiters

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7293074/alexander-deiters-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

196	10,845	54	99
papers	citations	h-index	g-index
226	12,219	8.5 avg, IF	6.81
ext. papers	ext. citations		L-index

#	Paper	IF	Citations
196	Efficient Amber Suppression Ribosomal Skipping for Synthesis of Photoconditional Nanobodies <i>ACS Synthetic Biology</i> , 2022 ,	5.7	1
195	Translational control of gene function through optically regulated nucleic acids. <i>Chemical Society Reviews</i> , 2021 , 50, 13253-13267	58.5	1
194	Optical Control of Phosphoinositide Binding: Rapid Activation of Subcellular Protein Translocation and Cell Signaling. <i>ACS Synthetic Biology</i> , 2021 , 10, 2886-2895	5.7	O
193	Blue Light Activated Rapamycin for Optical Control of Protein Dimerization in Cells and Zebrafish Embryos. <i>ACS Chemical Biology</i> , 2021 , 16, 2434-2443	4.9	2
192	Small Molecule Control of Morpholino Antisense Oligonucleotide Function through Staudinger Reduction. <i>Journal of the American Chemical Society</i> , 2021 , 143, 18665-18671	16.4	4
191	Patterning Microtubule Network Organization Reshapes Cell-Like Compartments. <i>ACS Synthetic Biology</i> , 2021 , 10, 1338-1350	5.7	2
190	DNA Computing: NOT Logic Gates See the Light. ACS Synthetic Biology, 2021, 10, 1682-1689	5.7	2
189	Targeted Protein Degradation through Fast Optogenetic Activation and Its Application to the Control of Cell Signaling. <i>Journal of the American Chemical Society</i> , 2021 , 143, 9222-9229	16.4	8
188	Protein Labeling and Crosslinking by Covalent Aptamers. <i>Angewandte Chemie</i> , 2021 , 133, 16035-16040	3.6	O
187	Protein Labeling and Crosslinking by Covalent Aptamers. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 15899-15904	16.4	6
186	High-Throughput Amenable MALDI-MS Detection of RNA and DNA with On-Surface Analyte Enrichment Using Fluorous Partitioning. <i>SLAS Discovery</i> , 2021 , 26, 58-66	3.4	О
185	Regulating CRISPR/Cas9 Function through Conditional Guide RNA Control. <i>ChemBioChem</i> , 2021 , 22, 63-	73 28	3
184	Small-molecule control of neurotransmitter sulfonation. <i>Journal of Biological Chemistry</i> , 2021 , 296, 1000	0 <u>9.4</u>	2
183	Light-guided intrabodies for on-demand target recognition in human cells <i>Chemical Science</i> , 2021 , 12, 5787-5795	9.4	2
182	Conditional gene knockdowns in sea urchins using caged morpholinos. <i>Developmental Biology</i> , 2021 , 475, 21-29	3.1	6
181	Designer membraneless organelles sequester native factors for control of cell behavior. <i>Nature Chemical Biology</i> , 2021 , 17, 998-1007	11.7	11
180	Chemogenetic and optogenetic control of post-translational modifications through genetic code expansion. <i>Current Opinion in Chemical Biology</i> , 2021 , 63, 123-131	9.7	5

(2019-2021)

179	Targeted protein oxidation using a chromophore-modified rapamycin analog. <i>Chemical Science</i> , 2021 , 12, 13425-13433	9.4	1	
178	Optical control of MAP kinase kinase 6 (MKK6) reveals that it has divergent roles in pro-apoptotic and anti-proliferative signaling. <i>Journal of Biological Chemistry</i> , 2020 , 295, 8494-8504	5.4	6	
177	Controlling Phosphate Removal with Light: The Development of Optochemical Tools to Probe Protein Phosphatase Function. <i>SLAS Discovery</i> , 2020 , 25, 957-960	3.4	1	
176	Optical Control of Cellular ATP Levels with a Photocaged Adenylate Kinase. <i>ChemBioChem</i> , 2020 , 21, 1832-1836	3.8	7	
175	Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light-Activated Guide RNA. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8998-9003	16.4	46	
174	Optical Control of Small Molecule-Induced Protein Degradation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 2193-2197	16.4	56	
173	Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Light-Activated Guide RNA. <i>Angewandte Chemie</i> , 2020 , 132, 9083-9088	3.6	12	
172	Fast phosphine-activated control of protein function using unnatural lysine analogues. <i>Methods in Enzymology</i> , 2020 , 638, 191-217	1.7	1	
171	Phosphine-Activated Lysine Analogues for Fast Chemical Control of Protein Subcellular Localization and Protein SUMOylation. <i>ChemBioChem</i> , 2020 , 21, 141-148	3.8	9	
170	Genetic code expansion in mammalian cells: A plasmid system comparison. <i>Bioorganic and Medicinal Chemistry</i> , 2020 , 28, 115772	3.4	5	
169	Synthesis and application of light-switchable arylazopyrazole rapamycin analogs. <i>Organic and Biomolecular Chemistry</i> , 2019 , 17, 8348-8353	3.9	7	
168	Optical control of protein phosphatase function. <i>Nature Communications</i> , 2019 , 10, 4384	17.4	20	
167	Development of photolabile protecting groups and their application to the optochemical control of cell signaling. <i>Current Opinion in Structural Biology</i> , 2019 , 57, 164-175	8.1	51	
166	Small molecule inhibition of microRNA-21 expression reduces cell viability and microtumor formation. <i>Bioorganic and Medicinal Chemistry</i> , 2019 , 27, 3735-3743	3.4	7	
165	Combinatorial control of gene function with wavelength-selective caged morpholinos. <i>Methods in Enzymology</i> , 2019 , 624, 69-88	1.7	3	
164	Aryl Azides as Phosphine-Activated Switches for Small Molecule Function. <i>Scientific Reports</i> , 2019 , 9, 1470	4.9	12	
163	Light-activation of Cre recombinase in zebrafish embryos through genetic code expansion. <i>Methods in Enzymology</i> , 2019 , 624, 265-281	1.7	5	
162	Enzyme Allostery: Now Controllable by Light. <i>Cell Chemical Biology</i> , 2019 , 26, 1481-1483	8.2	4	

161	A high-avidity biosensor reveals plasma membrane PI(3,4)P is predominantly a class I PI3K signaling product. <i>Journal of Cell Biology</i> , 2019 , 218, 1066-1079	7.3	60
160	Allosteres to regulate neurotransmitter sulfonation. <i>Journal of Biological Chemistry</i> , 2019 , 294, 2293-2	30;14	6
159	Optochemical Control of Protein Localization and Activity within Cell-like Compartments. <i>Biochemistry</i> , 2018 , 57, 2590-2596	3.2	21
158	Optochemical Control of Biological Processes in Cells and Animals. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 2768-2798	16.4	228
157	Optochemische Steuerung biologischer Vorglige in Zellen und Tieren. <i>Angewandte Chemie</i> , 2018 , 130, 2816-2848	3.6	67
156	Recent advances in the optical control of protein function through genetic code expansion. <i>Current Opinion in Chemical Biology</i> , 2018 , 46, 99-107	9.7	60
155	Small Molecule Inhibition of MicroRNA miR-21 Rescues Chemosensitivity of Renal-Cell Carcinoma to Topotecan. <i>Journal of Medicinal Chemistry</i> , 2018 , 61, 5900-5909	8.3	28
154	Genetic Code Expansion in Animals. ACS Chemical Biology, 2018, 13, 2375-2386	4.9	50
153	Reversible and Tunable Photoswitching of Protein Function through Genetic Encoding of Azobenzene Amino Acids in Mammalian Cells. <i>ChemBioChem</i> , 2018 , 19, 2178-2185	3.8	27
152	Computational design of chemogenetic and optogenetic split proteins. <i>Nature Communications</i> , 2018 , 9, 4042	17.4	49
151	Potent and Readily Accessible Bistramide A Analogues through Diverted Total Synthesis. <i>Chemistry - A European Journal</i> , 2018 , 24, 16271-16275	4.8	7
150	Cell-Lineage Tracing in Zebrafish Embryos with an Expanded Genetic Code. <i>ChemBioChem</i> , 2018 , 19, 1244-1249	3.8	15
149	Optical Control of DNA Helicase Function through Genetic Code Expansion. <i>ChemBioChem</i> , 2017 , 18, 466-469	3.8	14
148	Genetic Encoding of Photocaged Tyrosines with Improved Light-Activation Properties for the Optical Control of Protease Function. <i>ChemBioChem</i> , 2017 , 18, 1442-1447	3.8	28
147	Small Molecule Release and Activation through DNA Computing. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13909-13915	16.4	32
146	Genetic Code Expansion in Zebrafish Embryos and Its Application to Optical Control of Cell Signaling. <i>Journal of the American Chemical Society</i> , 2017 , 139, 9100-9103	16.4	43
145	Alcohol, Aldehyde, and Ketone Liberation and Intracellular Cargo Release through Peroxide-Mediated Boryl Ether Fragmentation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 13353-13360	16.4	27
144	Genetically encoded optical activation of DNA recombination in human cells. <i>Chemical Communications</i> , 2016 , 52, 8529-32	5.8	29

(2014-2016)

143	Small-molecule control of protein function through Staudinger reduction. <i>Nature Chemistry</i> , 2016 , 8, 1027-1034	17.6	66
142	Functional Analysis of Cortical Neuron Migration Using miRNA Silencing. <i>Neuromethods</i> , 2016 , 73-88	0.4	
141	Konditionale Kontrolle der CRISPR/Cas9-Funktion. Angewandte Chemie, 2016, 128, 5482-5487	3.6	5
140	Conditional Control of CRISPR/Cas9 Function. Angewandte Chemie - International Edition, 2016, 55, 539	4 .1 %.4	36
139	A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes. <i>ACS Chemical Biology</i> , 2016 , 11, 1973-81	4.9	55
138	Light-cleavable rapamycin dimer as an optical trigger for protein dimerization. <i>Chemical Communications</i> , 2015 , 51, 5702-5	5.8	37
137	Conditional control of alternative splicing through light-triggered splice-switching oligonucleotides. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3656-62	16.4	37
136	Optical Control of CRISPR/Cas9 Gene Editing. <i>Journal of the American Chemical Society</i> , 2015 , 137, 5642	2-5 6.4	176
135	Optically Triggered Immune Response through Photocaged Oligonucleotides. <i>Tetrahedron Letters</i> , 2015 , 56, 3639-3642	2	15
134	Engineering a bacterial tape recorder. <i>ChemBioChem</i> , 2015 , 16, 1027-9	3.8	2
133	A concise synthesis of the Lycopodium alkaloid cermizine D. <i>Tetrahedron Letters</i> , 2015 , 56, 3683-3685	2	8
133	A concise synthesis of the Lycopodium alkaloid cermizine D. <i>Tetrahedron Letters</i> , 2015 , 56, 3683-3685 Aryl amide small-molecule inhibitors of microRNA miR-21 function. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2015 , 25, 4793-4796	2.9	36
	Aryl amide small-molecule inhibitors of microRNA miR-21 function. <i>Bioorganic and Medicinal</i>		
132	Aryl amide small-molecule inhibitors of microRNA miR-21 function. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2015 , 25, 4793-4796 Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides.	2.9	36
132	Aryl amide small-molecule inhibitors of microRNA miR-21 function. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2015 , 25, 4793-4796 Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides. <i>Virology</i> , 2015 , 476, 168-179	2.9 3.6	36 25
132 131 130	Aryl amide small-molecule inhibitors of microRNA miR-21 function. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2015 , 25, 4793-4796 Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides. <i>Virology</i> , 2015 , 476, 168-179 Optically Controlled Signal Amplification for DNA Computation. <i>ACS Synthetic Biology</i> , 2015 , 4, 1064-9 Genetic Code Expansion of Mammalian Cells with Unnatural Amino Acids. <i>Current Protocols in</i>	2.9 3.6 5.7	36 25 10
132 131 130	Aryl amide small-molecule inhibitors of microRNA miR-21 function. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2015 , 25, 4793-4796 Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides. <i>Virology</i> , 2015 , 476, 168-179 Optically Controlled Signal Amplification for DNA Computation. <i>ACS Synthetic Biology</i> , 2015 , 4, 1064-9 Genetic Code Expansion of Mammalian Cells with Unnatural Amino Acids. <i>Current Protocols in Chemical Biology</i> , 2015 , 7, 187-199	2.9 3.6 5.7	36 25 10

125	Sequential gene silencing using wavelength-selective caged morpholino oligonucleotides. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 10114-8	16.4	73
124	Photochemical Control of Gene Function in Zebrafish Embryos with Light-Activated Morpholinos 2014 , 337-350		
123	Genetically encoded unstrained olefins for live cell labeling with tetrazine dyes. <i>Chemical Communications</i> , 2014 , 50, 13085-8	5.8	42
122	Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities. <i>Bioconjugate Chemistry</i> , 2014 , 25, 1730-8	6.3	51
121	Site-specific promoter caging enables optochemical gene activation in cells and animals. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7152-8	16.4	35
120	Optical control of protein function through unnatural amino acid mutagenesis and other optogenetic approaches. <i>ACS Chemical Biology</i> , 2014 , 9, 1398-407	4.9	72
119	Thiourea-based fluorescent chemosensors for aqueous metal ion detection and cellular imaging. Journal of Organic Chemistry, 2014 , 79, 6054-60	4.2	34
118	Modulating the pKa of a tyrosine in KlenTaq DNA polymerase that is crucial for abasic site bypass by in vivo incorporation of a non-canonical amino acid. <i>ChemBioChem</i> , 2014 , 15, 1735-7	3.8	7
117	Control of protein function through optochemical translocation. ACS Synthetic Biology, 2014, 3, 731-6	5.7	30
116	MicroRNA targeting of CoREST controls polarization of migrating cortical neurons. <i>Cell Reports</i> , 2014 , 7, 1168-83	10.6	53
115	Interfacing Synthetic DNA Logic Operations with Protein Outputs. <i>Angewandte Chemie</i> , 2014 , 126, 1340	08 .d 34	16
114	Synthesis of non-linear protein dimers through a genetically encoded Thiol-ene reaction. <i>PLoS ONE</i> , 2014 , 9, e105467	3.7	11
114		3.7	43
	2014 , 9, e105467 Genetic encoding of caged cysteine and caged homocysteine in bacterial and mammalian cells.		
113	2014, 9, e105467 Genetic encoding of caged cysteine and caged homocysteine in bacterial and mammalian cells. ChemBioChem, 2014, 15, 1793-9 Sequential Gene Silencing Using Wavelength-Selective Caged Morpholino Oligonucleotides.	3.8	43
113	Genetic encoding of caged cysteine and caged homocysteine in bacterial and mammalian cells. ChemBioChem, 2014, 15, 1793-9 Sequential Gene Silencing Using Wavelength-Selective Caged Morpholino Oligonucleotides. Angewandte Chemie, 2014, 126, 10278-10282 Interfacing synthetic DNA logic operations with protein outputs. Angewandte Chemie - International	3.8 3.6 16.4	43
113 112 111	Genetic encoding of caged cysteine and caged homocysteine in bacterial and mammalian cells. <i>ChemBioChem</i> , 2014 , 15, 1793-9 Sequential Gene Silencing Using Wavelength-Selective Caged Morpholino Oligonucleotides. <i>Angewandte Chemie</i> , 2014 , 126, 10278-10282 Interfacing synthetic DNA logic operations with protein outputs. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 13192-5	3.8 3.6 16.4	43 18 33

107	Identification of inhibitors of microRNA function from small molecule screens. <i>Methods in Molecular Biology</i> , 2014 , 1095, 147-56	1.4	14
106	Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. <i>Journal of the American Chemical Society</i> , 2013 , 135, 13433-9	16.4	72
105	Cellular delivery and photochemical activation of antisense agents through a nucleobase caging strategy. <i>ACS Chemical Biology</i> , 2013 , 8, 2272-82	4.9	20
104	Optochemical control of RNA interference in mammalian cells. <i>Nucleic Acids Research</i> , 2013 , 41, 10518-	28 0.1	60
103	DNA computation in mammalian cells: microRNA logic operations. <i>Journal of the American Chemical Society</i> , 2013 , 135, 10512-8	16.4	159
102	Small-Molecule Regulation of MicroRNA Function 2013 , 119-145		
101	MicroRNA miR-122 as a therapeutic target for oligonucleotides and small molecules. <i>Current Medicinal Chemistry</i> , 2013 , 20, 3629-40	4.3	23
100	DNA computation: a photochemically controlled AND gate. <i>Journal of the American Chemical Society</i> , 2012 , 134, 3810-5	16.4	89
99	Spatiotemporal control of microRNA function using light-activated antagomirs. <i>Molecular BioSystems</i> , 2012 , 8, 2987-93		49
98	Light-controlled synthetic gene circuits. Current Opinion in Chemical Biology, 2012, 16, 292-9	9.7	46
97	Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. <i>Nature Chemistry</i> , 2012 , 4, 298-304	17.6	369
96	Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells. <i>ACS Chemical Biology</i> , 2012 , 7, 1247-56	4.9	54
95	Hydrogen peroxide induced activation of gene expression in mammalian cells using boronate estrone derivatives. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 9066-70	16.4	11
94	High-throughput luciferase reporter assay for small-molecule inhibitors of microRNA function. <i>Journal of Biomolecular Screening</i> , 2012 , 17, 822-8		53
93	Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11912-5	16.4	110
92	A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos. <i>Development (Cambridge)</i> , 2012 , 139, 437-42	6.6	26
91	A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos. <i>Journal of Cell Science</i> , 2012 , 125, e1-e1	5.3	1
90	Activation and Deactivation of Antisense and RNA Interference Function with Light 2012 , 275-291		1

89 Chemo- and Regioselectivity Enhancement in Solid-Supported Reactions **2011**, 171-204

88	Synthesis of the pyridine core of cyclothiazomycin. <i>Organic Letters</i> , 2011 , 13, 4352-5	6.2	48
87	The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. <i>Journal of Molecular Biology</i> , 2011 , 406, 257-74	6.5	40
86	Efficacy of CN Coupling Reactions with a New Multinuclear Copper Complex Catalyst and Its Dissociation into Mononuclear Species. <i>European Journal of Organic Chemistry</i> , 2011 , 2011, 4154-4159	3.2	13
85	Light-Activated Gene Editing with a Photocaged Zinc-Finger Nuclease. <i>Angewandte Chemie</i> , 2011 , 123, 6971-6974	3.6	13
84	Light-activated gene editing with a photocaged zinc-finger nuclease. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6839-42	16.4	35
83	Heterotaxin: a TGF-Isignaling inhibitor identified in a multi-phenotype profiling screen in Xenopus embryos. <i>Chemistry and Biology</i> , 2011 , 18, 252-63		12
82	Photochemical control of bacterial signal processing using a light-activated erythromycin. <i>Molecular BioSystems</i> , 2011 , 7, 2554-7		6
81	Light-activated kinases enable temporal dissection of signaling networks in living cells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 2124-7	16.4	127
80	Genetically encoding an aliphatic diazirine for protein photocrosslinking. <i>Chemical Science</i> , 2011 , 2, 480	- 4)8.3	72
79	Stabilization and photochemical regulation of antisense agents through PEGylation. <i>Bioconjugate Chemistry</i> , 2011 , 22, 2136-42	6.3	11
78	Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. <i>Journal of the American Chemical Society</i> , 2011 , 133, 420-3	16.4	109
77	Photochemical control of DNA decoy function enables precise regulation of nuclear factor B activity. <i>Journal of the American Chemical Society</i> , 2011 , 133, 13176-82	16.4	52
76	Activation and deactivation of DNAzyme and antisense function with light for the photochemical regulation of gene expression in mammalian cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 6183-93	16.4	138
75	Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. <i>Journal of the American Chemical Society</i> , 2010 , 132, 7976-81	16.4	216
74	Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. <i>Journal of the American Chemical Society</i> , 2010 , 132, 15644-50	16.4	100
73	Photocleavable polyethylene glycol for the light-regulation of protein function. <i>Bioconjugate Chemistry</i> , 2010 , 21, 1404-7	6.3	37
72	Total synthesis of cryptoacetalide. <i>Journal of Organic Chemistry</i> , 2010 , 75, 5355-8	4.2	33

(2009-2010)

71	Tricyclic alkaloid core structures assembled by a cyclotrimerization-coupled intramolecular nucleophilic substitution reaction. <i>Organic Letters</i> , 2010 , 12, 1288-91	6.2	50
70	Improved synthesis of the two-photon caging group 3-nitro-2-ethyldibenzofuran and its application to a caged thymidine phosphoramidite. <i>Organic Letters</i> , 2010 , 12, 916-9	6.2	38
69	Expanding the genetic code of yeast for incorporation of diverse unnatural amino acids via a pyrrolysyl-tRNA synthetase/tRNA pair. <i>Journal of the American Chemical Society</i> , 2010 , 132, 14819-24	16.4	153
68	Site-specific incorporation of fluorotyrosines into proteins in Escherichia coli by photochemical disguise. <i>Biochemistry</i> , 2010 , 49, 1557-9	3.2	31
67	Generating permissive site-specific unnatural aminoacyl-tRNA synthetases. <i>Biochemistry</i> , 2010 , 49, 166	7 <i>-3</i> .7	71
66	Genetically encoded photocontrol of protein localization in mammalian cells. <i>Journal of the American Chemical Society</i> , 2010 , 132, 4086-8	16.4	195
65	Principles and applications of the photochemical control of cellular processes. <i>ChemBioChem</i> , 2010 , 11, 47-53	3.8	126
64	Small molecule modifiers of the microRNA and RNA interference pathway. AAPS Journal, 2010, 12, 51-6	5 0 3.7	81
63	Recent advances in the photochemical control of protein function. <i>Trends in Biotechnology</i> , 2010 , 28, 468-75	15.1	107
62	Reversible light switching of cell signalling by genetically encoded protein dimerization. <i>ChemBioChem</i> , 2010 , 11, 301-3	3.8	4
61	Photocaged t7 RNA polymerase for the light activation of transcription and gene function in pro- and eukaryotic cells. <i>ChemBioChem</i> , 2010 , 11, 972-7	3.8	56
60	Restriction enzyme-free mutagenesis via the light regulation of DNA polymerization. <i>Nucleic Acids Research</i> , 2009 , 37, e58	20.1	20
59	Open-Vessel Microwave-Mediated [2+2+2]-Cyclotrimerization Reactions. <i>Synthesis</i> , 2009 , 2009, 3785-3	7 9 0 ₉	3
58	Photochemical regulation of restriction endonuclease activity. <i>ChemBioChem</i> , 2009 , 10, 1612-6	3.8	20
57	A Light-Activated DNA Polymerase. Angewandte Chemie, 2009 , 121, 6064-6067	3.6	19
56	A light-activated DNA polymerase. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 5950-3	16.4	53
55	Light activation as a method of regulating and studying gene expression. <i>Current Opinion in Chemical Biology</i> , 2009 , 13, 678-86	9.7	102
54	Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry. <i>Journal of the American Chemical Society</i> , 2009 , 131, 8720-1	16.4	257

53	Development of a robust and high throughput method for profiling N-linked glycans derived from plasma glycoproteins by NanoLC-FTICR mass spectrometry. <i>Journal of Proteome Research</i> , 2009 , 8, 3764	1-76	41
52	Light-activated Cre recombinase as a tool for the spatial and temporal control of gene function in mammalian cells. <i>ACS Chemical Biology</i> , 2009 , 4, 441-5	4.9	67
51	Light-activation of gene function in mammalian cells via ribozymes. <i>Chemical Communications</i> , 2009 , 568-70	5.8	35
50	The effect of microwave irradiation on DNA hybridization. <i>Organic and Biomolecular Chemistry</i> , 2009 , 7, 2506-8	3.9	34
49	Light-triggered polymerase chain reaction. Chemical Communications, 2008, 462-4	5.8	54
48	A cyclotrimerization route to cannabinoids. <i>Organic Letters</i> , 2008 , 10, 2195-8	6.2	67
47	Phenanthridine synthesis via [2+2+2] cyclotrimerization reactions. <i>Organic and Biomolecular Chemistry</i> , 2008 , 6, 263-5	3.9	119
46	Light-activated deoxyguanosine: photochemical regulation of peroxidase activity. <i>Molecular BioSystems</i> , 2008 , 4, 508-11		34
45	Synthesis of anthracene and azaanthracene fluorophores via [2+2+2] cyclotrimerization reactions. <i>Organic Letters</i> , 2008 , 10, 4661-4	6.2	46
44	Microwave-mediated nickel-catalyzed cyclotrimerization reactions: total synthesis of illudinine. Journal of Organic Chemistry, 2008 , 73, 342-5	4.2	57
43	Microwave activation of enzymatic catalysis. Journal of the American Chemical Society, 2008, 130, 10048	- 9 6.4	97
42	Synthesis and investigation of the 5-formylcytidine modified, anticodon stem and loop of the human mitochondrial tRNAMet. <i>Nucleic Acids Research</i> , 2008 , 36, 6548-57	20.1	41
41	Light-regulated RNA-small molecule interactions. <i>ChemBioChem</i> , 2008 , 9, 1225-8	3.8	54
40	Gene silencing in mammalian cells with light-activated antisense agents. ChemBioChem, 2008, 9, 2937-4	0 3.8	78
39	Small-molecule inhibitors of microrna miR-21 function. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7482-4	16.4	350
38	Microwave-assisted synthesis of unnatural amino acids. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2008 , 18, 5478-80	2.9	14
37	A general approach to triphenylenes and azatriphenylenes: total synthesis of dehydrotylophorine and tylophorine. <i>Chemical Communications</i> , 2008 , 4750-2	5.8	65
36	Photochemical control of biological processes. <i>Organic and Biomolecular Chemistry</i> , 2007 , 5, 999-1005	3.9	176

35	Microwave-assisted solid-supported alkyne cyclotrimerization reactions for combinatorial chemistry. <i>ACS Combinatorial Science</i> , 2007 , 9, 735-8		35
34	Synthesis of indanones via solid-supported [2+2+2] cyclotrimerization. <i>Journal of Organic Chemistry</i> , 2007 , 72, 7801-4	4.2	43
33	Photochemical activation of protein expression in bacterial cells. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 4290-2	16.4	55
32	A general approach to chemo- and regioselective cyclotrimerization reactions. <i>Angewandte Chemie</i> - <i>International Edition</i> , 2007 , 46, 5187-90	16.4	102
31	Photochemical Activation of Protein Expression in Bacterial Cells. <i>Angewandte Chemie</i> , 2007 , 119, 4368	-43670	15
30	A General Approach to Chemo- and Regioselective Cyclotrimerization Reactions. <i>Angewandte Chemie</i> , 2007 , 119, 5279-5282	3.6	31
29	Photochemical DNA activation. <i>Organic Letters</i> , 2007 , 9, 1903-6	6.2	94
28	Solid-supported [2+2+2] cyclotrimerizations. <i>Chemistry - A European Journal</i> , 2006 , 12, 5563-8	4.8	45
27	A genetically encoded photocaged tyrosine. Angewandte Chemie - International Edition, 2006, 45, 2728-	31 6.4	154
26	A Genetically Encoded Photocaged Tyrosine. <i>Angewandte Chemie</i> , 2006 , 118, 2794-2797	3.6	50
25	A New Photocaging Group for Aromatic N-Heterocycles. <i>Synthesis</i> , 2006 , 2006, 2147-2150	2.9	15
24	A genetically encoded fluorescent amino acid. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 9785-9	11.5	216
23	General strategy for the syntheses of corynanthe, tacaman, and oxindole alkaloids. <i>Journal of Organic Chemistry</i> , 2006 , 71, 6547-61	4.2	95
22	Conditional transgene and gene targeting methodologies in zebrafish. <i>Zebrafish</i> , 2006 , 3, 415-29	2	21
		4	
21	Photochemical hammerhead ribozyme activation. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2006 , 16, 2658-61	2.9	43
21	Photochemical hammerhead ribozyme activation. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2006 ,		43
	Photochemical hammerhead ribozyme activation. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2006 , 16, 2658-61	2.9	

17	Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. <i>Chemical Reviews</i> , 2004 , 104, 2199-238	68.1	1183
16	Site-specific PEGylation of proteins containing unnatural amino acids. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2004 , 14, 5743-5	2.9	234
15	Synthesis of Oxygen- and Nitrogen-Containing Heterocycles by Ring-Closing Metathesis. <i>ChemInform</i> , 2004 , 35, no		1
14	A genetically encoded photocaged amino acid. <i>Journal of the American Chemical Society</i> , 2004 , 126, 143	30 <u>6</u> 674	211
13	Biomimetic entry to the sarpagan family of indole alkaloids: total synthesis of +-geissoschizine and +-N-methylvellosimine. <i>Journal of the American Chemical Society</i> , 2003 , 125, 4541-50	16.4	103
12	Adding amino acids with novel reactivity to the genetic code of Saccharomyces cerevisiae. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11782-3	16.4	327
11	Planar-chiral (2E,7Z)- and (2Z,7E)-cyclonona-2,7-dien-1-yl carbamates by asymmetric, bis-allyic, alpha, alphaTcycloalkylationstudies on their conformational stability. <i>Chemistry - A European Journal</i> , 2002 , 8, 1833-42	4.8	19
10	Stereoselective total synthesis of dihydrocorynantheol. <i>Organic Letters</i> , 2002 , 4, 3243-5	6.2	46
9	Enantio- and Diastereoselective Synthesis of a 3,4-Divinylpyrrolidine via Asymmetric Deprotonation and Cyclization of a 9-Chloro-5-aza-2,7-nonadiene. <i>Advanced Synthesis and Catalysis</i> , 2001 , 343, 181-183	₃ 5.6	8
8	Asymmetric synthesis of cis-1,2-dialkenyl-substituted cyclopentanes via (-)-sparteine-mediated lithiation and cycloalkylation of a 9-chloro-2,7-nonadienyl carbamate. <i>Journal of Organic Chemistry</i> , 2001 , 66, 2842-9	4.2	17
7	Enantioselektive Synthese von funktionalisierten 1,5-Cyclononadienen durch intramolekulare Cycloalkylierung unter	3.6	6
6	Enantioselective Synthesis of Functionalized 1,5-Cyclononadienes by Intramolecular Cycloalkylation under #Diallyl Coupling. <i>Angewandte Chemie - International Edition</i> , 2000 , 39, 2105-2107	16.4	16
5	Asymmetric synthesis of a (2Z,7E)-cyclononadiene by an intramolecular cycloalkylation and insight to its conformational properties. <i>Organic Letters</i> , 2000 , 2, 2415-8	6.2	11
4	Chiral induzierte, mit einer Eliminierung gekoppelte Lithium-En-Reaktion (Synthese von (+)-(3R,4R)-1,2-Dihydromultifiden. <i>Angewandte Chemie</i> , 1999 , 111, 529-532	3.6	7
3	Chiral Induction by Elimination-Coupled Lithium-Ene Reaction: Synthesis of (+)-(3R,4R)-1,2-Dihydromultifidene. <i>Angewandte Chemie - International Edition</i> , 1999 , 38, 546-548	16.4	18
2	Optical Control of Small Molecule-Induced Protein Degradation		6
1	Optical Control of Base Editing and Transcription through Light-Activated Guide RNA. ChemPhotoChem,	3.3	1