Alexander Deiters

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7293074/publications.pdf

Version: 2024-02-01

191 papers 13,191 citations

59 h-index 26610 107 g-index

226 all docs 226 docs citations

times ranked

226

10667 citing authors

#	Article	IF	CITATIONS
1	Synthesis of Oxygen- and Nitrogen-Containing Heterocycles by Ring-Closing Metathesis. Chemical Reviews, 2004, 104, 2199-2238.	47.7	1,275
2	Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nature Chemistry, 2012, 4, 298-304.	13.6	424
3	Smallâ€Molecule Inhibitors of MicroRNA miRâ€21 Function. Angewandte Chemie - International Edition, 2008, 47, 7482-7484.	13.8	398
4	Adding Amino Acids with Novel Reactivity to the Genetic Code of Saccharomyces Cerevisiae. Journal of the American Chemical Society, 2003, 125, 11782-11783.	13.7	371
5	Optochemical Control of Biological Processes in Cells and Animals. Angewandte Chemie - International Edition, 2018, 57, 2768-2798.	13.8	331
6	Genetic Encoding and Labeling of Aliphatic Azides and Alkynes in Recombinant Proteins <i>via</i> a Pyrrolysyl-tRNA Synthetase/tRNA _{CUA} Pair and Click Chemistry. Journal of the American Chemical Society, 2009, 131, 8720-8721.	13.7	285
7	A Genetically Encoded Photocaged Amino Acid. Journal of the American Chemical Society, 2004, 126, 14306-14307.	13.7	263
8	Site-specific PEGylation of proteins containing unnatural amino acids. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5743-5745.	2.2	250
9	Small Molecule Modifiers of MicroRNA miR-122 Function for the Treatment of Hepatitis C Virus Infection and Hepatocellular Carcinoma. Journal of the American Chemical Society, 2010, 132, 7976-7981.	13.7	247
10	A genetically encoded fluorescent amino acid. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9785-9789.	7.1	243
11	Genetically Encoded Photocontrol of Protein Localization in Mammalian Cells. Journal of the American Chemical Society, 2010, 132, 4086-4088.	13.7	232
12	Optical Control of CRISPR/Cas9 Gene Editing. Journal of the American Chemical Society, 2015, 137, 5642-5645.	13.7	220
13	DNA Computation in Mammalian Cells: MicroRNA Logic Operations. Journal of the American Chemical Society, 2013, 135, 10512-10518.	13.7	198
14	Photochemical control of biological processes. Organic and Biomolecular Chemistry, 2007, 5, 999-1005.	2.8	188
15	Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/tRNA Pair. Journal of the American Chemical Society, 2010, 132, 14819-14824.	13.7	187
16	A Genetically Encoded Photocaged Tyrosine. Angewandte Chemie - International Edition, 2006, 45, 2728-2731.	13.8	183
17	Activation and Deactivation of DNAzyme and Antisense Function with Light for the Photochemical Regulation of Gene Expression in Mammalian Cells. Journal of the American Chemical Society, 2010, 132, 6183-6193.	13.7	170
18	In vivo incorporation of an alkyne into proteins in Escherichia coli. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1521-1524.	2.2	164

#	Article	IF	CITATIONS
19	Principles and Applications of the Photochemical Control of Cellular Processes. ChemBioChem, 2010, 11, 47-53.	2.6	144
20	Light-Activated Kinases Enable Temporal Dissection of Signaling Networks in Living Cells. Journal of the American Chemical Society, 2011, 133, 2124-2127.	13.7	143
21	Light Regulation of Protein Dimerization and Kinase Activity in Living Cells Using Photocaged Rapamycin and Engineered FKBP. Journal of the American Chemical Society, 2011, 133, 420-423.	13.7	140
22	Photocontrol of Tyrosine Phosphorylation in Mammalian Cells via Genetic Encoding of Photocaged Tyrosine. Journal of the American Chemical Society, 2012, 134, 11912-11915.	13.7	140
23	Genetically Encoded Optochemical Probes for Simultaneous Fluorescence Reporting and Light Activation of Protein Function with Two-Photon Excitation. Journal of the American Chemical Society, 2014, 136, 15551-15558.	13.7	137
24	Phenanthridine synthesis via [2+2+2] cyclotrimerization reactions. Organic and Biomolecular Chemistry, 2008, 6, 263-265.	2.8	133
25	Optochemical Control of Deoxyoligonucleotide Function via a Nucleobase-Caging Approach. Accounts of Chemical Research, 2014, 47, 45-55.	15.6	126
26	Biomimetic Entry to the Sarpagan Family of Indole Alkaloids:  Total Synthesis of (+)-Geissoschizine and (+)-N-Methylvellosimine. Journal of the American Chemical Society, 2003, 125, 4541-4550.	13.7	118
27	Optical Control of Small Molecule-Induced Protein Degradation. Journal of the American Chemical Society, 2020, 142, 2193-2197.	13.7	118
28	Recent advances in the photochemical control of protein function. Trends in Biotechnology, 2010, 28, 468-475.	9.3	117
29	Photocaged Morpholino Oligomers for the Light-Regulation of Gene Function in Zebrafish and <i>Xenopus</i> Embryos. Journal of the American Chemical Society, 2010, 132, 15644-15650.	13.7	115
30	Light activation as a method of regulating and studying gene expression. Current Opinion in Chemical Biology, 2009, 13, 678-686.	6.1	114
31	Photochemical DNA Activation. Organic Letters, 2007, 9, 1903-1906.	4.6	110
32	A General Approach to Chemo- and Regioselective Cyclotrimerization Reactions. Angewandte Chemie - International Edition, 2007, 46, 5187-5190.	13.8	110
33	DNA Computation: A Photochemically Controlled AND Gate. Journal of the American Chemical Society, 2012, 134, 3810-3815.	13.7	109
34	Microwave Activation of Enzymatic Catalysis. Journal of the American Chemical Society, 2008, 130, 10048-10049.	13.7	103
35	General Strategy for the Syntheses of Corynanthe, Tacaman, and Oxindole Alkaloids. Journal of Organic Chemistry, 2006, 71, 6547-6561.	3.2	102
36	Sequential Gene Silencing Using Wavelength‧elective Caged Morpholino Oligonucleotides. Angewandte Chemie - International Edition, 2014, 53, 10114-10118.	13.8	97

#	Article	IF	CITATIONS
37	Small-molecule control of protein function through Staudinger reduction. Nature Chemistry, 2016, 8, 1027-1034.	13.6	95
38	Optochemische Steuerung biologischer VorgÄ r ge in Zellen und Tieren. Angewandte Chemie, 2018, 130, 2816-2848.	2.0	94
39	Recent advances in the optical control of protein function through genetic code expansion. Current Opinion in Chemical Biology, 2018, 46, 99-107.	6.1	94
40	A high-avidity biosensor reveals plasma membrane PI(3,4)P2 is predominantly a class I PI3K signaling product. Journal of Cell Biology, 2019, 218, 1066-1079.	5.2	93
41	Small Molecule Modifiers of the microRNA and RNA Interference Pathway. AAPS Journal, 2010, 12, 51-60.	4.4	90
42	Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Lightâ€Activated Guide RNA. Angewandte Chemie - International Edition, 2020, 59, 8998-9003.	13.8	90
43	Gene Silencing in Mammalian Cells with Lightâ€Activated Antisense Agents. ChemBioChem, 2008, 9, 2937-2940.	2.6	89
44	Generating Permissive Site-Specific Unnatural Aminoacyl-tRNA Synthetases. Biochemistry, 2010, 49, 1667-1677.	2. 5	89
45	Genetically Encoded Light-Activated Transcription for Spatiotemporal Control of Gene Expression and Gene Silencing in Mammalian Cells. Journal of the American Chemical Society, 2013, 135, 13433-13439.	13.7	83
46	Optical Control of Protein Function through Unnatural Amino Acid Mutagenesis and Other Optogenetic Approaches. ACS Chemical Biology, 2014, 9, 1398-1407.	3.4	83
47	Development of photolabile protecting groups and their application to the optochemical control of cell signaling. Current Opinion in Structural Biology, 2019, 57, 164-175.	5.7	83
48	Genetically encoding an aliphatic diazirine for protein photocrosslinking. Chemical Science, 2011, 2, 480-483.	7.4	81
49	Light-Activated Cre Recombinase as a Tool for the Spatial and Temporal Control of Gene Function in Mammalian Cells. ACS Chemical Biology, 2009, 4, 441-445.	3.4	78
50	A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes. ACS Chemical Biology, 2016, 11, 1973-1981.	3.4	78
51	Genetic Code Expansion in Animals. ACS Chemical Biology, 2018, 13, 2375-2386.	3.4	77
52	Optochemical control of RNA interference in mammalian cells. Nucleic Acids Research, 2013, 41, 10518-10528.	14.5	76
53	A Cyclotrimerization Route to Cannabinoids. Organic Letters, 2008, 10, 2195-2198.	4.6	75
54	Computational design of chemogenetic and optogenetic split proteins. Nature Communications, 2018, 9, 4042.	12.8	75

#	Article	IF	CITATIONS
55	A general approach to triphenylenes and azatriphenylenes: total synthesis of dehydrotylophorine and tylophorine. Chemical Communications, 2008, , 4750.	4.1	72
56	MicroRNA Targeting of CoREST Controls Polarization of Migrating Cortical Neurons. Cell Reports, 2014, 7, 1168-1183.	6.4	65
57	Genetic Code Expansion in Zebrafish Embryos and Its Application to Optical Control of Cell Signaling. Journal of the American Chemical Society, 2017, 139, 9100-9103.	13.7	64
58	Photochemical Control of DNA Decoy Function Enables Precise Regulation of Nuclear Factor κB Activity. Journal of the American Chemical Society, 2011, 133, 13176-13182.	13.7	63
59	Regulation of Transcription through Light-Activation and Light-Deactivation of Triplex-Forming Oligonucleotides in Mammalian Cells. ACS Chemical Biology, 2012, 7, 1247-1256.	3.4	63
60	Microwave-Mediated Nickel-Catalyzed Cyclotrimerization Reactions:  Total Synthesis of Illudinine. Journal of Organic Chemistry, 2008, 73, 342-345.	3.2	62
61	Photocaged T7 RNA Polymerase for the Light Activation of Transcription and Gene Function in Pro―and Eukaryotic Cells. ChemBioChem, 2010, 11, 972-977.	2.6	62
62	High-Throughput Luciferase Reporter Assay for Small-Molecule Inhibitors of MicroRNA Function. Journal of Biomolecular Screening, 2012, 17, 822-828.	2.6	62
63	Photochemical Activation of Protein Expression in Bacterial Cells. Angewandte Chemie - International Edition, 2007, 46, 4290-4292.	13.8	61
64	A Lightâ€Activated DNA Polymerase. Angewandte Chemie - International Edition, 2009, 48, 5950-5953.	13.8	60
65	Designer membraneless organelles sequester native factors for control of cell behavior. Nature Chemical Biology, 2021, 17, 998-1007.	8.0	60
66	Two Rapid Catalyst-Free Click Reactions for In Vivo Protein Labeling of Genetically Encoded Strained Alkene/Alkyne Functionalities. Bioconjugate Chemistry, 2014, 25, 1730-1738.	3.6	59
67	Lightâ€Regulated RNA–Small Molecule Interactions. ChemBioChem, 2008, 9, 1225-1228.	2.6	58
68	Light-controlled synthetic gene circuits. Current Opinion in Chemical Biology, 2012, 16, 292-299.	6.1	58
69	Spatiotemporal control of microRNA function using light-activated antagomirs. Molecular BioSystems, 2012, 8, 2987.	2.9	57
70	Light-triggered polymerase chain reaction. Chemical Communications, 2008, , 462-464.	4.1	56
71	Tricyclic Alkaloid Core Structures Assembled by a Cyclotrimerizationâ^'Coupled Intramolecular Nucleophilic Substitution Reaction. Organic Letters, 2010, 12, 1288-1291.	4.6	54
72	Synthesis of the Pyridine Core of Cyclothiazomycin. Organic Letters, 2011, 13, 4352-4355.	4.6	53

#	Article	IF	CITATIONS
73	Stereoselective Total Synthesis of Dihydrocorynantheol. Organic Letters, 2002, 4, 3243-3245.	4.6	50
74	Synthesis and investigation of the 5-formylcytidine modified, anticodon stem and loop of the human mitochondrial tRNAMet. Nucleic Acids Research, 2008, 36, 6548-6557.	14.5	50
75	Genetic Encoding of Caged Cysteine and Caged Homocysteine in Bacterial and Mammalian Cells. ChemBioChem, 2014, 15, 1793-1799.	2.6	50
76	Synthesis of Anthracene and Azaanthracene Fluorophores via [2+2+2] Cyclotrimerization Reactions. Organic Letters, 2008, 10, 4661-4664.	4.6	49
77	The Human Mitochondrial tRNAMet: Structure/Function Relationship of a Unique Modification in the Decoding of Unconventional Codons. Journal of Molecular Biology, 2011, 406, 257-274.	4.2	49
78	Pyridines via solid-supported [2 + 2 + 2] cyclotrimerization. Chemical Communications, 2006, , 1313.	4.1	48
79	Aryl amide small-molecule inhibitors of microRNA miR-21 function. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4793-4796.	2.2	48
80	Photochemical hammerhead ribozyme activation. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 2658-2661.	2.2	47
81	Solid-Supported [2+2+2] Cyclotrimerizations. Chemistry - A European Journal, 2006, 12, 5563-5568.	3.3	47
82	Genetically encoded unstrained olefins for live cell labeling with tetrazine dyes. Chemical Communications, 2014, 50, 13085-13088.	4.1	47
83	Genetic Encoding of Photocaged Tyrosines with Improved Lightâ€Activation Properties for the Optical Control of Protease Function. ChemBioChem, 2017, 18, 1442-1447.	2.6	47
84	Small Molecule Release and Activation through DNA Computing. Journal of the American Chemical Society, 2017, 139, 13909-13915.	13.7	47
85	Photocleavable Polyethylene Glycol for the Light-Regulation of Protein Function. Bioconjugate Chemistry, 2010, 21, 1404-1407.	3. 6	46
86	Lightâ€Activated Gene Editing with a Photocaged Zincâ€Finger Nuclease. Angewandte Chemie - International Edition, 2011, 50, 6839-6842.	13.8	44
87	Site-Specific Promoter Caging Enables Optochemical Gene Activation in Cells and Animals. Journal of the American Chemical Society, 2014, 136, 7152-7158.	13.7	44
88	Small Molecule Inhibition of MicroRNA miR-21 Rescues Chemosensitivity of Renal-Cell Carcinoma to Topotecan. Journal of Medicinal Chemistry, 2018, 61, 5900-5909.	6.4	44
89	Synthesis of Indanones via Solid-Supported [2+2+2] Cyclotrimerization. Journal of Organic Chemistry, 2007, 72, 7801-7804.	3.2	43
90	Conditional Control of Alternative Splicing through Light-Triggered Splice-Switching Oligonucleotides. Journal of the American Chemical Society, 2015, 137, 3656-3662.	13.7	43

#	Article	IF	Citations
91	Conditional Control of CRISPR/Cas9 Function. Angewandte Chemie - International Edition, 2016, 55, 5394-5399.	13.8	43
92	Development of a Robust and High Throughput Method for Profiling N-Linked Glycans Derived from Plasma Glycoproteins by NanoLCâ^FTICR Mass Spectrometry. Journal of Proteome Research, 2009, 8, 3764-3770.	3.7	42
93	Improved Synthesis of the Two-Photon Caging Group 3-Nitro-2-Ethyldibenzofuran and Its Application to a Caged Thymidine Phosphoramidite. Organic Letters, 2010, 12, 916-919.	4.6	41
94	Light-cleavable rapamycin dimer as an optical trigger for protein dimerization. Chemical Communications, 2015, 51, 5702-5705.	4.1	41
95	Genetically encoded optical activation of DNA recombination in human cells. Chemical Communications, 2016, 52, 8529-8532.	4.1	41
96	Light-activated deoxyguanosine: photochemical regulation of peroxidase activity. Molecular BioSystems, 2008, 4, 508.	2.9	40
97	Reversible and Tunable Photoswitching of Protein Function through Genetic Encoding of Azobenzene Amino Acids in Mammalian Cells. ChemBioChem, 2018, 19, 2178-2185.	2.6	40
98	The effect of microwave irradiation on DNA hybridization. Organic and Biomolecular Chemistry, 2009, 7, 2506.	2.8	39
99	Total Synthesis of Cryptoacetalide. Journal of Organic Chemistry, 2010, 75, 5355-5358.	3.2	39
100	Interfacing Synthetic DNA Logic Operations with Protein Outputs. Angewandte Chemie - International Edition, 2014, 53, 13192-13195.	13.8	39
101	Site-Specific Incorporation of Fluorotyrosines into Proteins in <i>Escherichia coli</i> by Photochemical Disguise. Biochemistry, 2010, 49, 1557-1559.	2.5	38
102	Light-activation of gene function in mammalian cells viaribozymes. Chemical Communications, 2009, , 568-570.	4.1	37
103	Control of Protein Function through Optochemical Translocation. ACS Synthetic Biology, 2014, 3, 731-736.	3.8	37
104	Thiourea-Based Fluorescent Chemosensors for Aqueous Metal Ion Detection and Cellular Imaging. Journal of Organic Chemistry, 2014, 79, 6054-6060.	3.2	36
105	Alcohol, Aldehyde, and Ketone Liberation and Intracellular Cargo Release through Peroxide-Mediated α-Boryl Ether Fragmentation. Journal of the American Chemical Society, 2016, 138, 13353-13360.	13.7	36
106	Microwave-Assisted Solid-Supported Alkyne Cyclotrimerization Reactions for Combinatorial Chemistry. ACS Combinatorial Science, 2007, 9, 735-738.	3.3	35
107	Optical control of protein phosphatase function. Nature Communications, 2019, 10, 4384.	12.8	33
108	MicroRNA miR-122 as a Therapeutic Target for Oligonucleotides and Small Molecules. Current Medicinal Chemistry, 2013, 20, 3629-3640.	2.4	32

#	Article	IF	CITATIONS
109	Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides. Virology, 2015, 476, 168-179.	2.4	31
110	Site-Specific in vivo Labeling of Proteins for NMR Studies. ChemBioChem, 2005, 6, 55-58.	2.6	30
111	Chiral Induction by Eliminationâ€Coupled Lithium–Ene Reaction: Synthesis of (+)â€(3 <i>R</i> ,4 <i>R</i>) Tj E	TQg1 1 0	.784314 rg8 29
112	Asymmetric Synthesis ofcis-1,2-Dialkenyl-Substituted Cyclopentanes via (â^')-Sparteine-Mediated Lithiation and Cycloalkylation of a 9-Chloro-2,7-nonadienyl Carbamate. Journal of Organic Chemistry, 2001, 66, 2842-2849.	3.2	29
113	A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos. Development (Cambridge), 2012, 139, 437-442.	2.5	29
114	Cellular Delivery and Photochemical Activation of Antisense Agents through a Nucleobase Caging Strategy. ACS Chemical Biology, 2013, 8, 2272-2282.	3.4	28
115	Sequential Gene Silencing Using Wavelengthâ€Selective Caged Morpholino Oligonucleotides. Angewandte Chemie, 2014, 126, 10278-10282.	2.0	26
116	Optochemical Control of Protein Localization and Activity within Cell-like Compartments. Biochemistry, 2018, 57, 2590-2596.	2.5	26
117	Conditional Transgene and Gene Targeting Methodologies in Zebrafish. Zebrafish, 2006, 3, 415-429.	1.1	24
118	Photochemical Regulation of Restriction Endonuclease Activity. ChemBioChem, 2009, 10, 1612-1616.	2.6	23
119	Aryl Azides as Phosphine-Activated Switches for Small Molecule Function. Scientific Reports, 2019, 9, 1470.	3.3	23
120	Spatiotemporal Control of CRISPR/Cas9 Function in Cells and Zebrafish using Lightâ€Activated Guide RNA. Angewandte Chemie, 2020, 132, 9083-9088.	2.0	23
121	Protein Labeling and Crosslinking by Covalent Aptamers. Angewandte Chemie - International Edition, 2021, 60, 15899-15904.	13.8	23
122	Small Molecule Control of Morpholino Antisense Oligonucleotide Function through Staudinger Reduction. Journal of the American Chemical Society, 2021, 143, 18665-18671.	13.7	23
123	Planar-Chiral (2E,7Z)- and (2Z,7E)-Cyclonona-2,7-dien-1-yl Carbamates by Asymmetric, Bis-Allylic α,α′-Cycloalkylation—Studies on Their Conformational Stability. Chemistry - A European Journal, 2002, 8, 1833.	3.3	22
124	Restriction enzyme-free mutagenesis via the light regulation of DNA polymerization. Nucleic Acids Research, 2009, 37, e58-e58.	14.5	22
125	Cellâ€Lineage Tracing in Zebrafish Embryos with an Expanded Genetic Code. ChemBioChem, 2018, 19, 1244-1249.	2.6	22
126	Phosphineâ€Activated Lysine Analogues for Fast Chemical Control of Protein Subcellular Localization and Protein SUMOylation. ChemBioChem, 2020, 21, 141-148.	2.6	22

#	Article	IF	Citations
127	A New Photocaging Group for Aromatic N-Heterocycles. Synthesis, 2006, 2006, 2147-2150.	2.3	20
128	Intracellular Lightâ€Activation of Riboswitch Activity. ChemBioChem, 2014, 15, 1346-1351.	2.6	20
129	Optically triggered immune response through photocaged oligonucleotides. Tetrahedron Letters, 2015, 56, 3639-3642.	1.4	19
130	Optical Control of DNA Helicase Function through Genetic Code Expansion. ChemBioChem, 2017, 18, 466-469.	2.6	19
131	Enantioselective Synthesis of Functionalized 1,5-Cyclononadienes by Intramolecular Cycloalkylation underα,α′-Diallyl Coupling. Angewandte Chemie - International Edition, 2000, 39, 2105-2107.	13.8	18
132	Regulating CRISPR/Cas9 Function through Conditional Guide RNA Control. ChemBioChem, 2021, 22, 63-72.	2.6	18
133	Translational control of gene function through optically regulated nucleic acids. Chemical Society Reviews, 2021, 50, 13253-13267.	38.1	18
134	Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase. Nature Cell Biology, 2022, 24, 708-722.	10.3	18
135	Asymmetric Synthesis of a (2Z,7E)-Cyclononadiene by an Intramolecular Cycloalkylation and Insight to Its Conformational Properties. Organic Letters, 2000, 2, 2415-2418.	4.6	17
136	Microwave-assisted synthesis of unnatural amino acids. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5478-5480.	2.2	17
137	Targeted Protein Degradation through Fast Optogenetic Activation and Its Application to the Control of Cell Signaling. Journal of the American Chemical Society, 2021, 143, 9222-9229.	13.7	17
138	Conditional gene knockdowns in sea urchins using caged morpholinos. Developmental Biology, 2021, 475, 21-29.	2.0	17
139	Identification of Inhibitors of MicroRNA Function from Small Molecule Screens. Methods in Molecular Biology, 2014, 1095, 147-156.	0.9	17
140	Efficacy of C–N Coupling Reactions with a New Multinuclear Copper Complex Catalyst and Its Dissociation into Mononuclear Species. European Journal of Organic Chemistry, 2011, 2011, 4154-4159.	2.4	16
141	Heterotaxin: A TGF-Î ² Signaling Inhibitor Identified in a Multi-Phenotype Profiling Screen in Xenopus Embryos. Chemistry and Biology, 2011, 18, 252-263.	6.0	16
142	Genetic code expansion in mammalian cells: A plasmid system comparison. Bioorganic and Medicinal Chemistry, 2020, 28, 115772.	3.0	16
143	Optical control of MAP kinase kinase 6 (MKK6) reveals that it has divergent roles in pro-apoptotic and anti-proliferative signaling. Journal of Biological Chemistry, 2020, 295, 8494-8504.	3.4	16
144	Chemogenetic and optogenetic control of post-translational modifications through genetic code expansion. Current Opinion in Chemical Biology, 2021, 63, 123-131.	6.1	16

#	Article	IF	CITATIONS
145	Light-guided intrabodies for on-demand <i>in situ</i> target recognition in human cells. Chemical Science, 2021, 12, 5787-5795.	7.4	15
146	Enantio- and Diastereoselective Synthesis of a 3,4-Divinylpyrrolidine via Asymmetric Deprotonation and Cyclization of a 9-Chloro-5-aza-2,7-nonadiene. Advanced Synthesis and Catalysis, 2001, 343, 181-183.	4.3	14
147	Stabilization and Photochemical Regulation of Antisense Agents through PEGylation. Bioconjugate Chemistry, 2011, 22, 2136-2142.	3.6	14
148	Optically Controlled Signal Amplification for DNA Computation. ACS Synthetic Biology, 2015, 4, 1064-1069.	3.8	14
149	Optical Control of Cellular ATP Levels with a Photocaged Adenylate Kinase. ChemBioChem, 2020, 21, 1832-1836.	2.6	14
150	Hydrogen Peroxide Induced Activation of Gene Expression in Mammalian Cells using Boronate Estrone Derivatives. Angewandte Chemie - International Edition, 2012, 51, 9066-9070.	13.8	12
151	Synthesis of Non-linear Protein Dimers through a Genetically Encoded Thiol-ene Reaction. PLoS ONE, 2014, 9, e105467.	2.5	12
152	Light-activation of Cre recombinase in zebrafish embryos through genetic code expansion. Methods in Enzymology, 2019, 624, 265-281.	1.0	12
153	Small molecule inhibition of microRNA-21 expression reduces cell viability and microtumor formation. Bioorganic and Medicinal Chemistry, 2019, 27, 3735-3743.	3.0	12
154	Allosteres to regulate neurotransmitter sulfonation. Journal of Biological Chemistry, 2019, 294, 2293-2301.	3.4	12
155	DNA Computing: NOT Logic Gates See the Light. ACS Synthetic Biology, 2021, 10, 1682-1689.	3.8	12
156	Enzyme Allostery: Now Controllable by Light. Cell Chemical Biology, 2019, 26, 1481-1483.	5.2	10
157	A concise synthesis of the Lycopodium alkaloid cermizine D. Tetrahedron Letters, 2015, 56, 3683-3685.	1.4	9
158	Potent and Readily Accessible Bistramideâ€A Analogues through Diverted Total Synthesis. Chemistry - A European Journal, 2018, 24, 16271-16275.	3.3	9
159	Control of Oncogenic miRNA Function by Light-Activated miRNA Antagomirs. Methods in Molecular Biology, 2014, 1165, 99-114.	0.9	9
160	Modulating the pK _a of a Tyrosine in <i>KlenTaq</i> DNA Polymerase that Is Crucial for Abasic Site Bypass by in Vivo Incorporation of a Nonâ€canonical Amino Acid. ChemBioChem, 2014, 15, 1735-1737.	2.6	8
161	Synthesis and application of light-switchable arylazopyrazole rapamycin analogs. Organic and Biomolecular Chemistry, 2019, 17, 8348-8353.	2.8	8
162	Small-molecule control of neurotransmitter sulfonation. Journal of Biological Chemistry, 2021, 296, 100094.	3.4	8

#	Article	IF	CITATIONS
163	Optical Control of Base Editing and Transcription through Lightâ€Activated Guide RNA. ChemPhotoChem, 0, , .	3.0	8
164	Photochemical control of bacterial signal processing using a light-activated erythromycin. Molecular BioSystems, 2011, 7, 2554.	2.9	7
165	Special Issue on Optochemical and Optogenetic Control of Cellular Processes. ChemBioChem, 2018, 19, 1198-1200.	2.6	7
166	Combinatorial control of gene function with wavelength-selective caged morpholinos. Methods in Enzymology, 2019, 624, 69-88.	1.0	7
167	Konditionale Kontrolle der CRISPR/Cas9â€Funktion. Angewandte Chemie, 2016, 128, 5482-5487.	2.0	5
168	Protein Labeling and Crosslinking by Covalent Aptamers. Angewandte Chemie, 2021, 133, 16035-16040.	2.0	5
169	Blue Light Activated Rapamycin for Optical Control of Protein Dimerization in Cells and Zebrafish Embryos. ACS Chemical Biology, 2021, 16, 2434-2443.	3.4	5
170	Reversible Light Switching of Cell Signalling by Genetically Encoded Protein Dimerization. ChemBioChem, 2010, 11, 301-303.	2.6	4
171	Patterning Microtubule Network Organization Reshapes Cell-Like Compartments. ACS Synthetic Biology, 2021, 10, 1338-1350.	3.8	4
172	Optochemical Activation of Kinase Function in Live Cells. Methods in Molecular Biology, 2014, 1148, 31-43.	0.9	4
173	Cellular MicroRNA Sensors Based on Luciferase Reporters. Methods in Molecular Biology, 2014, 1095, 135-146.	0.9	4
174	Efficient Amber Suppression <i>via</i> Ribosomal Skipping for <i>In Situ</i> Synthesis of Photoconditional Nanobodies. ACS Synthetic Biology, 2022, 11, 1466-1476.	3.8	4
175	Open-Vessel Microwave-Mediated [2+2+2]-Cyclotrimerization Reactions. Synthesis, 2009, 2009, 3785-3790.	2.3	3
176	Photopharmacology and Photochemical Biology. ChemPhotoChem, 2021, 5, 1031-1032.	3.0	3
177	Engineering a Bacterial Tape Recorder. ChemBioChem, 2015, 16, 1027-1029.	2.6	2
178	High-Throughput Amenable MALDI-MS Detection of RNA and DNA with On-Surface Analyte Enrichment Using Fluorous Partitioning. SLAS Discovery, 2021, 26, 58-66.	2.7	2
179	Targeted protein oxidation using a chromophore-modified rapamycin analog. Chemical Science, 2021, 12, 13425-13433.	7.4	2
180	Genetic Code Expansion of Mammalian Cells with Unnatural Amino Acids. Current Protocols in Chemical Biology, 2015, 7, 187-199.	1.7	2

#	Article	IF	CITATIONS
181	Fast phosphine-activated control of protein function using unnatural lysine analogues. Methods in Enzymology, 2020, 638, 191-217.	1.0	2
182	Optical Control of Phosphoinositide Binding: Rapid Activation of Subcellular Protein Translocation and Cell Signaling. ACS Synthetic Biology, 2021, 10, 2886-2895.	3.8	2
183	Synthesis of Oxygen- and Nitrogen-Containing Heterocycles by Ring-Closing Metathesis. ChemInform, 2004, 35, no.	0.0	1
184	Preface. Methods in Enzymology, 2019, 624, xiii-xv.	1.0	1
185	Controlling Phosphate Removal with Light: The Development of Optochemical Tools to Probe Protein Phosphatase Function. SLAS Discovery, 2020, 25, 957-960.	2.7	1
186	A photoactivatable small-molecule inhibitor for light-controlled spatiotemporal regulation of Rho kinase in live embryos. Journal of Cell Science, 2012, 125, e1-e1.	2.0	1
187	Activation and Deactivation of Antisense and RNA Interference Function with Light., 2012,, 275-291.		1
188	Oligonucleotides as targets and cellular probes. Bioorganic and Medicinal Chemistry, 2013, 21, 6099-6100.	3.0	0
189	Small-Molecule Regulation of MicroRNA Function. , 2013, , 119-145.		0
190	Functional Analysis of Cortical Neuron Migration Using miRNA Silencing. Neuromethods, 2016, , 73-88.	0.3	0
191	Targeted Drug Delivery through Optical Control of Cell Lysis. ACS Central Science, 2021, 7, 11-13.	11.3	O