Zhengdong Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7292910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High glucose microenvironment accelerates tumor growth via SREBP1-autophagy axis in pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 2019, 38, 302.	8.6	53
2	Resveratrol enhances the chemotherapeutic response and reverses the stemness induced by gemcitabine in pancreatic cancer cells via targeting <scp>SREBP</scp> 1. Cell Proliferation, 2019, 52, e12514.	5.3	65
3	Indometacin inhibits the proliferation and activation of human pancreatic stellate cells through the downregulation of COX-2. Oncology Reports, 2018, 39, 2243-2251.	2.6	17
4	ltraconazole inhibits invasion and migration of pancreatic cancer cells by suppressing TGF-β/SMAD2/3 signaling. Oncology Reports, 2018, 39, 1573-1582.	2.6	16
5	Norepinephrine enhances cell viability and invasion, and inhibits apoptosis of pancreatic cancer cells in a Notch‑1‑dependent manner. Oncology Reports, 2018, 40, 3015-3023.	2.6	12
6	Activation of Nrf2 by Sulforaphane Inhibits High Glucose-Induced Progression of Pancreatic Cancer via AMPK Dependent Signaling. Cellular Physiology and Biochemistry, 2018, 50, 1201-1215.	1.6	49
7	Resveratrol Inhibits ROS-Promoted Activation and Glycolysis of Pancreatic Stellate Cells via Suppression of miR-21. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-15.	4.0	54
8	Resveratrol-Induced Downregulation of NAF-1 Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine via the ROS/Nrf2 Signaling Pathways. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-16.	4.0	63
9	Metformin suppresses tumor angiogenesis and enhances the chemosensitivity of gemcitabine in a genetically engineered mouse model of pancreatic cancer. Life Sciences, 2018, 208, 253-261.	4.3	40
10	Resveratrol and cancer treatment: updates. Annals of the New York Academy of Sciences, 2017, 1403, 59-69.	3.8	98
11	Loss of <scp>AMPK</scp> activation promotes the invasion and metastasis of pancreatic cancer through an <scp>HSF</scp> 1â€dependent pathway. Molecular Oncology, 2017, 11, 1475-1492.	4.6	67
12	Desmoplasia suppression by metformin-mediated AMPK activation inhibits pancreatic cancer progression. Cancer Letters, 2017, 385, 225-233.	7.2	89
13	Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer. Molecular Cancer, 2017, 16, 131.	19.2	93
14	Lipoxin A4 reverses mesenchymal phenotypes to attenuate invasion and metastasis via the inhibition of autocrine TGF-β1 signaling in pancreatic cancer. Journal of Experimental and Clinical Cancer Research, 2017, 36, 181.	8.6	32
15	β2-Adrenogenic signaling regulates NNK-induced pancreatic cancer progression via upregulation of HIF-1α. Oncotarget, 2016, 7, 17760-17772.	1.8	17
16	Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	4.0	81
17	The Relevance of Nrf2 Pathway and Autophagy in Pancreatic Cancer Cells upon Stimulation of Reactive Oxygen Species. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	27
18	Hyperglycemia Promotes the Epithelial-Mesenchymal Transition of Pancreatic Cancer via Hydrogen Peroxide. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-9.	4.0	38

ZHENGDONG JIANG

#	Article	IF	CITATIONS
19	YAP Inhibition by Resveratrol via Activation of AMPK Enhances the Sensitivity of Pancreatic Cancer Cells to Gemcitabine. Nutrients, 2016, 8, 546.	4.1	56
20	Pancreatic carcinoma-specific immunotherapy using novel tumor specific cytotoxic T cells. Oncotarget, 2016, 7, 83601-83610.	1.8	4
21	Resveratrol in the treatment of pancreatic cancer. Annals of the New York Academy of Sciences, 2015, 1348, 10-19.	3.8	53
22	Ginkgolic acid suppresses the development of pancreatic cancer by inhibiting pathways driving lipogenesis. Oncotarget, 2015, 6, 20993-21003.	1.8	68
23	Overexpression of Nodal induces a metastatic phenotype in pancreatic cancer cells via the Smad2/3 pathway. Oncotarget, 2015, 6, 1490-1506.	1.8	39