Rosaria Bruno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/729277/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multivariate Metal–Organic Framework/Single-Walled Carbon Nanotube Buckypaper for Selective Lead Decontamination. ACS Applied Nano Materials, 2022, 5, 5223-5233.	2.4	20
2	Metalâ€Organic Frameworks as Unique Platforms to Gain Insight of σâ€Hole Interactions for the Removal of Organic Dyes from Aquatic Ecosystems. Chemistry - A European Journal, 2022, , .	1.7	4
3	Bioinspired Metalâ€Organic Frameworks in Mixed Matrix Membranes for Efficient Static/Dynamic Removal of Mercury from Water. Advanced Functional Materials, 2021, 31, 2008499.	7.8	43
4	Synthesis of a rod-based porous coordination polymer from a nucleotide as a sequential chiral inductor. Journal of Coordination Chemistry, 2021, 74, 200-215.	0.8	1
5	Reverse osmosis and nanofiltration membranes for highly efficient PFASs removal: overview, challenges and future perspectives. Dalton Transactions, 2021, 50, 5398-5410.	1.6	57
6	Highly Efficient Removal of Neonicotinoid Insecticides by Thioether-Based (Multivariate) Metal–Organic Frameworks. ACS Applied Materials & Interfaces, 2021, 13, 28424-28432.	4.0	29
7	A Nanoporous Supramolecular Metal–Organic Framework Based on a Nucleotide: Interplay of the π··ÂŪ€ Interactions Directing Assembly and Geometric Matching of Aromatic Tails. Molecules, 2021, 26, 4594.	1.7	3
8	Photodegradation of Brilliant Green Dye by a Zinc bioMOF and Crystallographic Visualization of Resulting CO2. Molecules, 2021, 26, 4098.	1.7	5
9	Synthesis and Enhanced Capture Properties of a New BioMOF@SWCNTâ€BP: Recovery of the Endangered Rareâ€Earth Elements from Aqueous Systems. Advanced Materials Interfaces, 2021, 8, 2100730.	1.9	13
10	Synthesis and Enhanced Capture Properties of a New BioMOF@SWCNTâ€BP: Recovery of the Endangered Rareâ€Earth Elements from Aqueous Systems (Adv. Mater. Interfaces 16/2021). Advanced Materials Interfaces, 2021, 8, 2170089.	1.9	0
11	A Biocompatible Aspartic-Decorated Metal–Organic Framework with Tubular Motif Degradable under Physiological Conditions. Inorganic Chemistry, 2021, 60, 14221-14229.	1.9	3
12	From Mononuclear Compounds to [2 × 2] Metallogrids: Ferromagnetically Coupled Systems Built by Nickel(II) and 3,6-Bis(2′-pyridyl)pyridazine (dppn). Crystal Growth and Design, 2020, 20, 6478-6492.	1.4	4
13	Supramolecular arrangements of novel clickable 4-substituted 3,6-bis(2′-pyridyl)pyridazine molecules. Journal of Molecular Structure, 2020, 1217, 128420.	1.8	2
14	Hydrolase–like catalysis and structural resolution of natural products by a metal–organic framework. Nature Communications, 2020, 11, 3080.	5.8	33
15	Gas Transport in Mixed Matrix Membranes: Two Methods for Time Lag Determination. Computation, 2020, 8, 28.	1.0	14
16	Glassy PEEK-WC vs. Rubbery Pebax®1657 Polymers: Effect on the Gas Transport in CuNi-MOF Based Mixed Matrix Membranes. Applied Sciences (Switzerland), 2020, 10, 1310.	1.3	12
17	Multivariate Metal–Organic Frameworks for the Simultaneous Capture of Organic and Inorganic Contaminants from Water. Journal of the American Chemical Society, 2019, 141, 13601-13609.	6.6	120
18	Efficient Gas Separation and Transport Mechanism in Rare Hemilabile Metal–Organic Framework. Chemistry of Materials, 2019, 31, 5856-5866.	3.2	18

Rosaria Bruno

#	Article	IF	CITATIONS
19	Metal–Organic Frameworks as Playgrounds for Reticulate Single-Molecule Magnets. Inorganic Chemistry, 2019, 58, 14498-14506.	1.9	23
20	Magneto-structural correlations in Ni(<scp>ii</scp>) [2 × 2] metallogrids featuring a variable number of μ-aquo or μ-hydroxo extra bridges. CrystEngComm, 2019, 21, 917-924.	1.3	10
21	A Metalloligand Approach for the Self-Assembly of a Magnetic Two-Dimensional Grid-of-Grids. Crystal Growth and Design, 2019, 19, 3905-3912.	1.4	9
22	Cu(II) complexes of cytosine and 1-methylcytosine with bromide: old motifs and new structures. Journal of Coordination Chemistry, 2018, 71, 615-632.	0.8	2
23	Crystallographic snapshots of host–guest interactions in drugs@metal–organic frameworks: towards mimicking molecular recognition processes. Materials Horizons, 2018, 5, 683-690.	6.4	64
24	Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. Journal of Materials Chemistry A, 2018, 6, 4912-4947.	5.2	369
25	Structural studies on Ba(II) adducts of the cytosine nucleobase and its derivative 1-Methylcytosine. Journal of Coordination Chemistry, 2018, 71, 828-844.	0.8	2
26	Efficient Capture of Organic Dyes and Crystallographic Snapshots by a Highly Crystalline Amino-Acid-Derived Metal-Organic Framework. Chemistry - A European Journal, 2018, 24, 17615-17615.	1.7	1
27	Lanthanide Discrimination with Hydroxyl-Decorated Flexible Metal–Organic Frameworks. Inorganic Chemistry, 2018, 57, 13895-13900.	1.9	24
28	Highly efficient temperature-dependent chiral separation with a nucleotide-based coordination polymer. Chemical Communications, 2018, 54, 6356-6359.	2.2	19
29	Efficient Capture of Organic Dyes and Crystallographic Snapshots by a Highly Crystalline Aminoâ€Acidâ€Đerived Metal–Organic Framework. Chemistry - A European Journal, 2018, 24, 17712-17718.	1.7	41
30	Cytosine Nucleobase Ligand: A Suitable Choice for Modulating Magnetic Anisotropy in Tetrahedrally Coordinated Mononuclear Co ^{II} Compounds. Inorganic Chemistry, 2017, 56, 1857-1864.	1.9	34
31	Postsynthetic Approach for the Rational Design of Chiral Ferroelectric Metal–Organic Frameworks. Journal of the American Chemical Society, 2017, 139, 8098-8101.	6.6	81
32	Cytosine as a root to a nonconventional layered hydroxide nanostructure. Journal of Coordination Chemistry, 0, , 1-12.	0.8	0