Mehmet Bayindir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7292491/publications.pdf

Version: 2024-02-01

81839 76872 5,611 121 39 74 citations g-index h-index papers 122 122 122 6523 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Towards multimaterial multifunctional fibres that see, hear, sense and communicate. Nature Materials, 2007, 6, 336-347.	13.3	435
2	Tight-Binding Description of the Coupled Defect Modes in Three-Dimensional Photonic Crystals. Physical Review Letters, 2000, 84, 2140-2143.	2.9	370
3	Turn-on Fluorescent Dopamine Sensing Based on <i>in Situ</i> Formation of Visible Light Emitting Polydopamine Nanoparticles. Analytical Chemistry, 2014, 86, 5508-5512.	3.2	211
4	Metal–insulator–semiconductor optoelectronic fibres. Nature, 2004, 431, 826-829.	13.7	209
5	Transmission properties of composite metamaterials in free space. Applied Physics Letters, 2002, 81, 120-122.	1.5	200
6	Photonic-crystal-based beam splitters. Applied Physics Letters, 2000, 77, 3902-3904.	1.5	195
7	Highly Transparent, Flexible, and Thermally Stable Superhydrophobic ORMOSIL Aerogel Thin Films. ACS Applied Materials & Samp; Interfaces, 2011, 3, 539-545.	4.0	191
8	Solid-State Emissive BODIPY Dyes with Bulky Substituents As Spacers. Organic Letters, 2009, 11, 2105-2107.	2.4	186
9	Photonic crystal-based resonant antenna with a very high directivity. Journal of Applied Physics, 2000, 87, 603-605.	1.1	168
10	Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption. Journal of Materials Chemistry B, 2013, 1, 1909.	2.9	157
11	Propagation of photons by hopping: A waveguiding mechanism through localized coupled cavities in three-dimensional photonic crystals. Physical Review B, 2000, 61, R11855-R11858.	1.1	154
12	Arrays of indefinitely long uniform nanowires and nanotubes. Nature Materials, 2011, 10, 494-501.	13.3	143
13	Spontaneous High Piezoelectricity in Poly(vinylidene fluoride) Nanoribbons Produced by Iterative Thermal Size Reduction Technique. ACS Nano, 2014, 8, 9311-9323.	7.3	110
14	Hollow multilayer photonic bandgap fibers for NIR applications. Optics Express, 2004, 12, 1510.	1.7	105
15	Transmission and reflection properties of composite double negative metamaterials in free space. IEEE Transactions on Antennas and Propagation, 2003, 51, 2592-2595.	3.1	104
16	Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides. Physical Review B, 2001, 63, .	1.1	96
17	Large-scale optical-field measurements with geometric fibre constructs. Nature Materials, 2006, 5, 532-536.	13.3	94
18	Thermal-Sensing Fiber Devices by Multimaterial Codrawing. Advanced Materials, 2006, 18, 845-849.	11.1	93

#	Article	IF	CITATIONS
19	Robust Cassie State of Wetting in Transparent Superhydrophobic Coatings. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 9680-9688.	4.0	91
20	Extremely fast and highly selective detection of nitroaromatic explosive vapours using fluorescent polymer thin films. Chemical Communications, 2013, 49, 6140.	2.2	87
21	A Motion―and Soundâ€Activated, 3Dâ€Printed, Chalcogenideâ€Based Triboelectric Nanogenerator. Advanced Materials, 2015, 27, 2367-2376.	11.1	83
22	Exceptionally directional sources with photonic-bandgap crystals. Journal of the Optical Society of America B: Optical Physics, 2001, 18, 1684.	0.9	75
23	Photonic band gaps, defect characteristics, and waveguiding in two-dimensional disordered dielectric and metallic photonic crystals. Physical Review B, 2001, 64, .	1.1	73
24	Formation of Pyrene Excimers in Mesoporous Ormosil Thin Films for Visual Detection of Nitro-explosives. ACS Applied Materials & Interfaces, 2014, 6, 4997-5004.	4.0	73
25	Superhydrophobic and Omnidirectional Antireflective Surfaces from Nanostructured Ormosil Colloids. ACS Applied Materials & Samp; Interfaces, 2013, 5, 853-860.	4.0	70
26	Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice. Physical Review B, 2001, 63, .	1.1	69
27	Heavy photons at coupled-cavity waveguide band edges in a three-dimensional photonic crystal. Physical Review B, 2000, 62, R2247-R2250.	1.1	68
28	Integrated fibres for self-monitored opticalÂtransport. Nature Materials, 2005, 4, 820-825.	13.3	68
29	Investigation of localized coupled-cavity modes in two-dimensional photonic bandgap structures. IEEE Journal of Quantum Electronics, 2002, 38, 837-843.	1.0	65
30	Detectors. Optics and Photonics News, 2004, 15, 24.	0.4	65
31	Microfluidics for reconfigurable electromagnetic metamaterials. Applied Physics Letters, 2009, 95, .	1.5	63
32	Coupled optical microcavities in one-dimensional photonic bandgap structures. Journal of Optics, 2001, 3, S184-S189.	1.5	61
33	Plasmonically enhanced hot electron based photovoltaic device. Optics Express, 2013, 21, 7196.	1.7	61
34	One-Pot Preparation of Fluorinated Mesoporous Silica Nanoparticles for Liquid Marble Formation and Superhydrophobic Surfaces. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1804-1808.	4.0	56
35	Propagation of light through localized coupled-cavity modes in one-dimensional photonic band-gap structures. Applied Physics A: Materials Science and Processing, 2001, 72, 117-119.	1.1	51
36	Pluronic polymer capped biocompatible mesoporous silica nanocarriers. Chemical Communications, 2013, 49, 9782.	2,2	50

3

#	Article	IF	Citations
37	Flexible and mechanically stable antireflective coatings from nanoporous organically modified silica colloids. Journal of Materials Chemistry, 2012, 22, 9671.	6.7	46
38	Surface Textured Polymer Fibers for Microfluidics. Advanced Functional Materials, 2014, 24, 4569-4576.	7.8	45
39	Soft biomimetic tapered nanostructures for large-area antireflective surfaces and SERS sensing. Journal of Materials Chemistry C, 2013, 1, 7842.	2.7	44
40	Dropping of electromagnetic waves through localized modes in three-dimensional photonic band gap structures. Applied Physics Letters, 2002, 81, 4514-4516.	1.5	39
41	Tuning Optical Discs for Plasmonic Applications. Plasmonics, 2009, 4, 237-243.	1.8	38
42	Band-dropping via coupled photonic crystal waveguides. Optics Express, 2002, 10, 1279.	1.7	37
43	Kilometer-Long Ordered Nanophotonic Devices by Preform-to-Fiber Fabrication. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12, 1202-1213.	1.9	36
44	Template-Directed Synthesis of Silica Nanotubes for Explosive Detection. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4159-4164.	4.0	36
45	Room temperature large-area nanoimprinting for broadband biomimetic antireflection surfaces. Applied Physics Letters, 2011, 99, .	1.5	36
46	A porosity difference based selective dissolution strategy to prepare shape-tailored hollow mesoporous silica nanoparticles. Journal of Materials Chemistry A, 2015, 3, 3839-3846.	5.2	36
47	Structural Coloring in Large Scale Core–Shell Nanowires. Nano Letters, 2011, 11, 4661-4665.	4.5	35
48	A New Route for Fabricating Onâ€Chip Chalcogenide Microcavity Resonator Arrays. Advanced Optical Materials, 2014, 2, 618-625.	3.6	35
49	Ultralow threshold laser action from toroidal polymer microcavity. Applied Physics Letters, 2009, 94, 203302.	1.5	34
50	Template-Free Synthesis of Organically Modified Silica Mesoporous Thin Films for TNT Sensing. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2892-2897.	4.0	33
51	Bioinspired Optoelectronic Nose with Nanostructured Wavelengthâ€6calable Hollow ore Infrared Fibers. Advanced Materials, 2011, 23, 1263-1267.	11.1	32
52	Bose-Einstein condensation in a two-dimensional, trapped, interacting gas. Physical Review A, 1998, 58, 3134-3137.	1.0	31
53	Template free preparation of nanoporous organically modified silica thin films on flexible substrates. Journal of Materials Chemistry, 2011, 21, 14830.	6.7	31
54	Continuous Triboelectric Power Harvesting and Biochemical Sensing Inside Poly(vinylidene fluoride) Hollow Fibers Using Microfluidic Droplet Generation. Advanced Materials Technologies, 2016, 1, 1600190.	3.0	29

#	Article	IF	CITATIONS
55	Biomimicry of multifunctional nanostructures in the neck feathers of mallard (Anas platyrhynchos) Tj ETQq $1\ 1\ 0$	784314 rgl	BŢ <i>Į</i> Overlock
56	Quasimetallic silicon micromachined photonic crystals. Applied Physics Letters, 2001, 78, 264-266.	1.5	25
57	Resonant transmission of light through surface plasmon structures. Applied Physics Letters, 2009, 94, 233102.	1.5	25
58	Photonic band gaps and localization in two-dimensional metallic quasicrystals. Europhysics Letters, 2001, 56, 41-46.	0.7	23
59	Smelling in Chemically Complex Environments: An Optofluidic Bragg Fiber Array for Differentiation of Methanol Adulterated Beverages. Analytical Chemistry, 2013, 85, 6384-6391.	3.2	23
60	All-chalcogenide glass omnidirectional photonic band gap variable infrared filters. Applied Physics Letters, 2009, 94, 111110.	1.5	21
61	Nanoconfinement of pyrene in mesostructured silica nanoparticles for trace detection of TNT in the aqueous phase. Nanoscale, 2014, 6, 15203-15209.	2.8	21
62	Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators. Scientific Reports, 2015, 5, 13173.	1.6	21
63	Real-Time and Selective Detection of Single Nucleotide DNA Mutations Using Surface Engineered Microtoroids. Analytical Chemistry, 2015, 87, 10920-10926.	3.2	21
64	Bio-inspired hierarchically structured polymer fibers for anisotropic non-wetting surfaces. RSC Advances, 2017, 7, 15553-15560.	1.7	21
65	Strong enhancement of spontaneous emission in amorphous-silicon-nitride photonic crystal based coupled-microcavity structures. Applied Physics A: Materials Science and Processing, 2001, 73, 125-127.	1.1	19
66	Non-resonant Mie scattering: Emergent optical properties of core-shell polymer nanowires. Scientific Reports, 2014, 4, 4607.	1.6	19
67	Macroscopic Assembly of Indefinitely Long and Parallel Nanowires into Large Area Photodetection Circuitry. Nano Letters, 2012, 12, 2483-2487.	4.5	17
68	Anemone-like nanostructures for non-lithographic, reproducible, large-area, and ultra-sensitive SERS substrates. Nanoscale, 2014, 6, 12710-12717.	2.8	17
69	Bose-Einstein condensation in a one-dimensional interacting system due to power-law trapping potentials. Physical Review A, 1999, 59, 1468-1472.	1.0	15
70	Oligonucleotide-based label-free detection with optical microresonators: strategies and challenges. Lab on A Chip, 2016, 16, 2572-2595.	3.1	15
71	Physics and applications of photonic nanocrystals. International Journal of Nanotechnology, 2004, 1 , 379.	0.1	14
72	High Selectivity Boolean Olfaction Using Hollow-Core Wavelength-Scalable Bragg Fibers. Analytical Chemistry, 2012, 84, 83-90.	3.2	13

#	Article	IF	Citations
73	Superenhancers: Novel opportunities for nanowire optoelectronics. Scientific Reports, 2014, 4, 7505.	1.6	13
74	Cytotoxicity of multifunctional surfactant containing capped mesoporous silica nanoparticles. RSC Advances, 2016, 6, 32060-32069.	1.7	13
75	Robust superhydrophilic patterning of superhydrophobic ormosil surfaces for high-throughput on-chip screening applications. RSC Advances, 2016, 6, 80049-80054.	1.7	12
76	Large and dynamical tuning of a chalcogenide Fabry-Perot cavity mode by temperature modulation. Optics Express, 2010, 18, 3168.	1.7	11
77	Phosphonate based organosilane modification of a simultaneously protein resistant and bioconjugable silica surface. Journal of Materials Chemistry B, 2014, 2, 7118-7122.	2.9	9
78	Nanosprings harvest light more efficiently. Applied Optics, 2015, 54, 8018.	2.1	9
79	Tailoring self-organized nanostructured morphologies in kilometer-long polymer fiber. Scientific Reports, 2014, 4, 4864.	1.6	9
80	Fluorescent Paper Strips for Highly Sensitive and Selective Detection of Nitroaromatic Analytes in Water Samples. ChemistrySelect, 2017, 2, 7735-7740.	0.7	9
81	Tapered nanoscale chalcogenide fibers directly drawn from bulk glasses as optical couplers for high-index resonators. Applied Optics, 2017, 56, 385.	2.1	7
82	Evaporation-Induced Biomolecule Detection on Versatile Superhydrophilic Patterned Surfaces: Glucose and DNA Assay. ACS Omega, 2018, 3, 13503-13509.	1.6	7
83	Label-Free Optical Biodetection of Pathogen Virulence Factors in Complex Media Using Microtoroids with Multifunctional Surface Functionality. ACS Sensors, 2018, 3, 352-359.	4.0	6
84	Energy spectrum for two-dimensional potentials in very high magnetic fields. Physical Review B, 1997, 56, 12088-12091.	1.1	5
85	Photonic bandgap narrowing in conical hollow core Bragg fibers. Applied Physics Letters, 2014, 105, 071102.	1.5	5
86	Binary coded identification of industrial chemical vapors with an optofluidic nose. Applied Optics, 2016, 55, 10247.	2.1	5
87	Synergic Viral-Bacterial Co-Infection in Catalase-Deficient COVID-19 Patients Causes Suppressed Innate Immunity and Lung Damages Due to Detrimental Elevation of Hydrogen Peroxide Concentration. SSRN Electronic Journal, 0, , .	0.4	5
88	Bose–Einstein condensation of noninteracting charged Bose gas in the presence of external potentials. Physica B: Condensed Matter, 2001, 293, 283-288.	1.3	4
89	Enhanced performance of dye-sensitized solar cells by omnidirectional antireflective coatings. Journal of Photonics for Energy, 2015, 5, 053090.	0.8	4
90	Photonic bandgap infrared spectrometer. Applied Optics, 2010, 49, 3596.	2.1	3

#	Article	IF	Citations
91	Physics and Applications of Photonic Crystals. , 2001, , 279-303.		2
92	Physics and Applications of Defect Structures in Photonic Crystals. , 2003, , 273-297.		2
93	Suppression of superconductivity in high- cuprates due to nonmagnetic impurities: Implications for the order parameter symmetry. European Physical Journal B, 1999, 10, 287-291.	0.6	1
94	<title>Coupled cavities in photonic crystals</title> ., 2002,,.		1
95	Coupled-Cavity Structures in Photonic Crystals. Materials Research Society Symposia Proceedings, 2002, 722, 241.	0.1	1
96	Physics and applications of defect structures in photonic crystals. , 2003, 5000, 237.		1
97	Generation of new frequencies in toroid microcavities. , 2008, , .		1
98	Sensors: Bioinspired Optoelectronic Nose with Nanostructured Wavelength-Scalable Hollow-Core Infrared Fibers (Adv. Mater. 10/2011). Advanced Materials, 2011, 23, 1262-1262.	11,1	1
99	Energy Harvesting: A Motion―and Soundâ€Activated, 3Dâ€Printed, Chalcogenideâ€Based Triboelectric Nanogenerator (Adv. Mater. 14/2015). Advanced Materials, 2015, 27, 2408-2408.	11.1	1
100	A New Route for Fabricating On-Chip Chalcogenide Microcavity Resonators. , 2015, , .		1
101	Highly directional resonant antennas built around photonic crystals. , 0, , .		0
102	Disorder and localization in the lowest Landau level in the presence of dilute point scatterers. Solid State Communications, 1999, 112, 157-160.	0.9	0
103	Propagation of Photons by Hopping. Optics and Photonics News, 2000, 11, 31_1.	0.4	0
104	Experimental demonstration of highly confined photonic crystal based waveguides. , 2001, , .		0
105	Experimental demonstration of highly confined photonic crystal based waveguides. , 0, , .		0
106	Strong enhancement of spontaneous emission in hydrogenated amorphous silicon nitride coupled-microcavity structures. , 2001, , .		0
107	Photonic band gap effect and localization in two-dimensional Penrose lattice. , 0, , .		0
108	Photonic band gap effect and localization in two-dimensional Penrose lattice. , 2001, , .		0

#	Article	IF	CITATIONS
109	A novel fabrication technique by composite material processing: Integrated metal-insulator-semiconductor fibers and fiber devices. Materials Research Society Symposia Proceedings, 2005, 888, 1.	0.1	0
110	Novel optoelectronic fibers codrawn from conducting, semiconducting and insulating materials. , 2005, , .		0
111	Detaecting large-area optical fields using geometric fiber constructs. , 2006, , .		O
112	All-chalcogenide variable infrared filter., 2009, , .		0
113	Ultrasensitive label-free microcavity biosensors with high selectivity., 2011,,.		O
114	Artificial olfaction inside nanostructured infrared fiber arrays. , 2011, , .		0
115	Plasmonically enhanced hot electron based photovoltaic device: erratum. Optics Express, 2013, 21, 23324.	1.7	0
116	Microfluidics: Surface Textured Polymer Fibers for Microfluidics (Adv. Funct. Mater. 29/2014). Advanced Functional Materials, 2014, 24, 4568-4568.	7.8	0
117	Microresonators: A New Route for Fabricating Onâ€Chip Chalcogenide Microcavity Resonator Arrays (Advanced Optical Materials 7/2014). Advanced Optical Materials, 2014, 2, 696-696.	3.6	0
118	Physics and Applications of Photonic Crystals. , 2000, , 467-478.		0
119	Applications of Photonic Crystals to Directional Antennas. , 2001, , 321-328.		0
120	Iterative Size Reduction Technique for Optical Nanostructures. , 2012, , .		0
121	Macroscopic Assembly of Indefinitely Long and Parallel Nanowires into Large Area Photodetection Circuitry., 2012,,.		O