Cheng-Hao Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7292228/publications.pdf

Version: 2024-02-01

759233 794594 24 384 12 19 citations h-index g-index papers 24 24 24 331 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nanobubble-assisted scaling inhibition in membrane distillation for the treatment of high-salinity brine. Water Research, 2022, 209, 117954.	11.3	30
2	Effects of temperature and particle concentration on aggregation of nanoplastics in freshwater and seawater. Science of the Total Environment, 2022, 817, 152562.	8.0	17
3	The onset of surface-enhanced Raman scattering for single-particle detection of submicroplastics. Journal of Environmental Sciences, 2022, 121, 58-64.	6.1	15
4	Dyeing Wool Knitted Fabric in Nano-scale Reverse Micelle with Reactive Dyes — A Computer Colour Matching Study. Fibers and Polymers, 2021, 22, 1320-1332.	2.1	1
5	Graphene Oxide/Reduced Graphene Oxide Enhanced Noniridescent Structural Colors Based on Silica Photonic Spray Paints with Improved Mechanical Robustness. Nanomaterials, 2021, 11, 949.	4.1	4
6	Determination of microplastics in the edible green-lipped mussel Perna viridis using an automated mapping technique of Raman microspectroscopy. Journal of Hazardous Materials, 2021, 420, 126541.	12.4	30
7	Improved Raman spectroscopy-based approach to assess microplastics in seafood. Environmental Pollution, 2021, 289, 117648.	7.5	35
8	In Vivo Biodistribution, Clearance, and Biocompatibility of Multiple Carbon Dots Containing Nanoparticles for Biomedical Application. Pharmaceutics, 2021, 13, 1872.	4.5	10
9	Fabrication of Structural-Coloured Carbon Fabrics by Thermal Assisted Gravity Sedimentation Method. Nanomaterials, 2020, 10, 1133.	4.1	18
10	Reverse Micellar Dyeing of Cotton Fiber with Reactive Dyes: A Study of the Effect of Water pH and Hardness. ACS Omega, 2019, 4, 11808-11814.	3.5	12
11	A Computer Color-Matching Study of Reverse Micellar Dyeing of Wool with Reactive Dyes. Polymers, 2019, 11, 132.	4.5	2
12	Aqueous Synthesis of Multiâ€Carbon Dot Crossâ€Linked Polyethyleneimine Particles with Enhanced Photoluminescent Properties. Macromolecular Rapid Communications, 2019, 40, e1800869.	3.9	9
13	Reverse Micellar Dyeing of Wool Fabric with Reactive Dyes. Fibers and Polymers, 2019, 20, 2367-2375.	2.1	7
14	Dyeing Properties of Cotton with Reactive Dye in Nonane Nonaqueous Reverse Micelle System. ACS Omega, 2018, 3, 2812-2819.	3.5	21
15	Comparison of computer colour matching of waterâ€based and solventâ€based reverse micellar dyeing of cotton fibre. Coloration Technology, 2018, 134, 258-265.	1.5	12
16	Effect of graphene oxide inclusion on the optical reflection of a silica photonic crystal film. RSC Advances, 2018, 8, 16593-16602.	3.6	11
17	Octane-Assisted Reverse Micellar Dyeing of Cotton with Reactive Dyes. Polymers, 2017, 9, 678.	4.5	20
18	Green Synthesis of Smart Metal/Polymer Nanocomposite Particles and Their Tuneable Catalytic Activities. Polymers, 2016, 8, 105.	4.5	43

#	Article	IF	CITATION
19	Amphiphilic Core–Shell Nanocomposite Particles for Enhanced Magnetic Resonance Imaging. Particle and Particle Systems Characterization, 2016, 33, 756-763.	2.3	6
20	Dyeing cotton in alkane solvent using polyethylene glycol-based reverse micelle as reactive dye carrier. Cellulose, 2016, 23, 965-980.	4.9	42
21	Influence of temperature on the formation and encapsulation of gold nanoparticles using a temperature-sensitive template. Data in Brief, 2015, 5, 434-438.	1.0	11
22	Synthesis and Characterization of Solvent-Invertible Amphiphilic Hollow Particles. Langmuir, 2013, 29, 7583-7590.	3.5	11
23	pH-induced formation of various hierarchical structures from amphiphilic core–shell nanotubes. RSC Advances, 2012, 2, 1303.	3.6	4
24	Formation of nanostructured materials using inexpensive hollow particles of amphiphilic graft copolymers as building blocks: 1. insight into the mechanism of nanotube formation. Soft Matter, 2009, 5, 4914.	2.7	13