J Andrés ## List of Publications by Year in descending order Source: https://exaly.com/author-pdf/7291850/publications.pdf Version: 2024-02-01 490 papers 16,001 citations 65 h-index 89 g-index 504 all docs 504 docs citations 504 times ranked 11865 citing authors | # | Article | IF | CITATIONS | |----|--|-------------|-----------| | 1 | Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature. Applied Physics Letters, 2003, 83, 1566-1568. | 3.3 | 257 | | 2 | Structural and optical properties of CaTiO3 perovskite-based materials obtained by microwave-assisted hydrothermal synthesis: An experimental and theoretical insight. Acta Materialia, 2009, 57, 5174-5185. | 7.9 | 194 | | 3 | Morphology and Blue Photoluminescence Emission of PbMoO ₄ Processed in Conventional Hydrothermal. Journal of Physical Chemistry C, 2009, 113, 5812-5822. | 3.1 | 171 | | 4 | Understanding Reaction Mechanisms in Organic Chemistry from Catastrophe Theory Applied to the Electron Localization Function Topology. Journal of Physical Chemistry A, 2008, 112, 7128-7136. | 2.5 | 165 | | 5 | An Aromaticity Scale Based on the Topological Analysis of the Electron Localization Function Including σ and π Contributions. Journal of Chemical Theory and Computation, 2005, 1, 83-86. | 5.3 | 152 | | 6 | Theoretical insights in enzyme catalysis. Chemical Society Reviews, 2004, 33, 98-107. | 38.1 | 150 | | 7 | Electronic structure and optical properties of BaMoO4 powders. Current Applied Physics, 2010, 10, 614-624. | 2.4 | 150 | | 8 | The Joint Use of Catastrophe Theory and Electron Localization Function to Characterize Molecular Mechanisms. A Density Functional Study of the Dielsâ 'Alder Reaction between Ethylene and 1,3-Butadiene. Journal of Physical Chemistry A, 2003, 107, 6014-6024. | 2.5 | 149 | | 9 | Influence of Reactant Polarity on the Course of the Inverse-Electron-Demand Dielsâ 'Alder Reaction. A DFT Study of Regio- and Stereoselectivity, Presence of Lewis Acid Catalyst, and Inclusion of Solvent Effects in the Reaction between Nitroethene and Substituted Ethenes. Journal of Organic Chemistry, 1999. 64. 5867-5875. | 3.2 | 136 | | 10 | Hierarchical Assembly of CaMoO ₄ Nano-Octahedrons and Their Photoluminescence Properties. Journal of Physical Chemistry C, 2011, 115, 5207-5219. | 3.1 | 130 | | 11 | New Findings on the Dielsâ^'Alder Reactions. An Analysis Based on the Bonding Evolution Theory.
Journal of Physical Chemistry A, 2006, 110, 13939-13947. | 2.5 | 128 | | 12 | Toward an Understanding of the Growth of Ag Filaments on α-Ag ₂ WO ₄ and Their Photoluminescent Properties: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2014, 118, 1229-1239. | 3.1 | 124 | | 13 | Facet-dependent photocatalytic and antibacterial properties of l±-Ag ₂ WO ₄ crystals: combining experimental data and theoretical insights. Catalysis Science and Technology, 2015, 5, 4091-4107. | 4.1 | 123 | | 14 | Experimental and Theoretical Study on the Structure, Optical Properties, and Growth of Metallic Silver Nanostructures in Ag ₃ PO ₄ . Journal of Physical Chemistry C, 2015, 119, 6293-6306. | 3.1 | 120 | | 15 | Density Functional Theory Study of the Brookite Surfaces and Phase Transitions between Natural Titania Polymorphs. Journal of Physical Chemistry B, 2006, 110, 23417-23423. | 2.6 | 119 | | 16 | Static simulation of bulk and selected surfaces of anatase TiO2. Surface Science, 2001, 490, 116-124. | 1.9 | 115 | | 17 | Thermodynamic argument about SnO2 nanoribbon growth. Applied Physics Letters, 2003, 83, 635-637. | 3. 3 | 115 | | 18 | Nine questions on energy decomposition analysis. Journal of Computational Chemistry, 2019, 40, 2248-2283. | 3.3 | 113 | | # | Article | IF | CITATIONS | |----|--|--------------|-----------| | 19 | Efficient microwave-assisted hydrothermal synthesis of CuO sea urchin-like architectures via a mesoscale self-assembly. CrystEngComm, 2010, 12, 1696. | 2.6 | 109 | | 20 | A Systematic Density Functional Theory Study of VxOy+ and VxOY ($X = 2\hat{a}^4$, $Y = 2\hat{a}^1$ 0) Systems. Journal of Physical Chemistry A, 2001, 105, 9760-9775. | 2.5 | 107 | | 21 | Synthesis of wurtzite ZnS nanoparticles using the microwave assisted solvothermal method. Journal of Alloys and Compounds, 2013, 556, 153-159. | 5. 5 | 105 | | 22 | A novel ozone gas sensor based on one-dimensional (1D) α-Ag ₂ WO ₄ nanostructures. Nanoscale, 2014, 6, 4058-4062. | 5 . 6 | 105 | | 23 | Room-temperature photoluminescence ofBaTiO3:â€fJoint experimental and theoretical study. Physical Review B, 2005, 71, . | 3.2 | 103 | | 24 | Direct in situ observation of the electron-driven synthesis of Ag filaments on α-Ag2WO4 crystals. Scientific Reports, 2013, 3, 1676. | 3.3 | 103 | | 25 | ZnWO ₄ nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Physical Chemistry Chemical Physics, 2018, 20, 1923-1937. | 2.8 | 103 | | 26 | Periodic study on the structural and electronic properties of bulk, oxidized and reduced SnO 2 (1 10) surfaces and the interaction with O 2. Surface Science, 2002, 511 , 408-420. | 1.9 | 100 | | 27 | A Theoretical Study on the Relationship between Nucleophilicity and Ionization Potentials in Solution Phase. Journal of Physical Chemistry A, 2003, 107, 5588-5593. | 2.5 | 100 | | 28 | Zinc blende versus wurtzite ZnS nanoparticles: control of the phase and optical properties by tetrabutylammonium hydroxide. Physical Chemistry Chemical Physics, 2014, 16, 20127-20137. | 2.8 | 100 | | 29 | Potentiated Electron Transference in α-Ag ₂ WO ₄ Microcrystals with Ag
Nanofilaments as Microbial Agent. Journal of Physical Chemistry A, 2014, 118, 5769-5778. | 2.5 | 99 | | 30 | Structural and electronic analysis of the atomic scale nucleation of Ag on \hat{l}_{\pm} -Ag2WO4 induced by electron irradiation. Scientific Reports, 2014, 4, 5391. | 3.3 | 99 | | 31 | Density functional theory calculation of the electronic structure ofBa0.5Sr0.5TiO3:Photoluminescent properties and structural disorder. Physical Review B, 2004, 69, . | 3.2 | 98 | | 32 | A relationship between structural and electronic order–disorder effects and optical properties in crystalline TiO ₂ nanomaterials. Dalton Transactions, 2015, 44, 3159-3175. | 3.3 | 96 | | 33 | Understanding the Molecular Mechanism of the 1,3-Dipolar Cycloaddition between Fulminic Acid and Acetylene in Terms of the Electron Localization Function and Catastrophe Theory. Chemistry - A European Journal, 2004, 10, 5165-5172. | 3.3 | 95 | | 34 | A Hybrid Potential Reaction Path and Free Energy Study of the Chorismate Mutase Reaction. Journal of the American Chemical Society, 2001, 123, 1709-1712. | 13.7 | 92 | | 35 | Enhancing Reactivity of Carbonyl Compounds via Hydrogen-Bond Formation. A DFT Study of the Hetero-Dielsâ ^{-,} Alder Reaction between Butadiene Derivative and Acetone in Chloroform. Journal of Organic Chemistry, 2003, 68, 8662-8668. | 3.2 | 91 | | 36 | Long-range and short-range structures of cube-like shape SrTiO3 powders: microwave-assisted hydrothermal synthesis and photocatalytic activity. Physical Chemistry Chemical Physics, 2013, 15, 12386. | 2.8 | 91 | | # | Article | IF | Citations | |----|---|------|------------| | 37 | Synthesis of Fine Micro-sized BaZrO ₃ Powders Based on a Decaoctahedron Shape by the Microwave-Assisted Hydrothermal Method. Crystal
Growth and Design, 2009, 9, 833-839. | 3.0 | 86 | | 38 | Presence of excited electronic state in CaWO4 crystals provoked by a tetrahedral distortion: An experimental and theoretical investigation. Journal of Applied Physics, 2011, 110, . | 2.5 | 84 | | 39 | Unraveling reaction mechanisms by means of Quantum Chemical Topology Analysis. International Journal of Quantum Chemistry, 2014, 114, 1239-1252. | 2.0 | 84 | | 40 | Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations. Nanotechnology, 2015, 26, 405703. | 2.6 | 84 | | 41 | A combined theoretical and experimental study of electronic structure and optical properties of \hat{l}^2 -ZnMoO4 microcrystals. Polyhedron, 2013, 54, 13-25. | 2.2 | 83 | | 42 | Silver Molybdate and Silver Tungstate Nanocomposites with Enhanced Photoluminescence.
Nanomaterials and Nanotechnology, 2014, 4, 22. | 3.0 | 83 | | 43 | Characterization of the High-Pressure Structures and Phase Transformations in SnO2. A Density Functional Theory Study. Journal of Physical Chemistry B, 2007, 111, 6479-6485. | 2.6 | 82 | | 44 | Theoretical Modeling of Enzyme Catalytic Power: Analysis of "Cratic―and Electrostatic Factors in CatecholO-Methyltransferase. Journal of the American Chemical Society, 2003, 125, 7726-7737. | 13.7 | 79 | | 45 | Describing the Molecular Mechanism of Organic Reactions by Using Topological Analysis of Electronic Localization Function. Current Organic Chemistry, 2011, 15, 3566-3575. | 1.6 | 79 | | 46 | The interplay between morphology and photocatalytic activity in ZnO and N-doped ZnO crystals. Materials and Design, 2017, 120, 363-375. | 7.0 | 79 | | 47 | Catalytic Mechanism of Dihydrofolate Reductase Enzyme. A Combined
Quantum-Mechanical/Molecular-Mechanical Characterization of Transition State Structure for the
Hydride Transfer Step. Journal of the American Chemical Society, 1999, 121, 12140-12147. | 13.7 | 78 | | 48 | Toward Understanding the Photocatalytic Activity of PbMoO ₄ Powders with Predominant (111), (100), (011), and (110) Facets. A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2013, 117, 21382-21395. | 3.1 | 76 | | 49 | Protective Face Masks: Current Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Future Trends. ACS Applied Materials & Discrete Status and Province | 8.0 | 76 | | 50 | Structure and Bonding of Chlorine Oxides and Peroxides: Â ClOx, ClOx-($x=1\hat{a}^4$), and Cl2Ox($x=1\hat{a}^8$). Journal of Physical Chemistry A, 1999, 103, 3078-3088. | 2.5 | 74 | | 51 | A simple protocol to help calculate saddle points. Transition-state structures for the Meyerâ€"Schuster reaction in non-aqueous media: An ab initio MO study. Chemical Physics Letters, 1984, 109, 471-477. | 2.6 | 7 3 | | 52 | A Joint Experimental and Theoretical Study on the Nanomorphology of CaWO ₄ Crystals. Journal of Physical Chemistry C, 2011, 115, 20113-20119. | 3.1 | 73 | | 53 | A theoretical study on the structure, energetics and bonding of VOx+ and VOx (x=1–4) systems. Chemical Physics Letters, 2001, 333, 493-503. | 2.6 | 72 | | 54 | An efficient microwave-assisted hydrothermal synthesis of BaZrO3 microcrystals: growth mechanism and photoluminescence emissions. CrystEngComm, 2010, 12, 3612. | 2.6 | 72 | | # | Article | IF | CITATIONS | |----|--|------|-----------| | 55 | Topological Analysis of Multiple Metalâ^'Metal Bonds in Dimers of the M2(Formamidinate)4Type with M = Nb, Mo, Tc, Ru, Rh, and Pd. Journal of Physical Chemistry A, 2001, 105, 9460-9466. | 2.5 | 71 | | 56 | Electronic and structural properties of SnxTi1â^'xO2 solid solutions: a periodic DFT study. Catalysis Today, 2003, 85, 145-152. | 4.4 | 71 | | 57 | A theoretical analysis of adsorption and dissociation of CH3OH on the stoichiometric $SnO2(110)$ surface. Surface Science, 1999, 430, 213-222. | 1.9 | 70 | | 58 | Photoluminescence and Photocatalytic Properties of Ag ₃ PO ₄ Microcrystals: An Experimental and Theoretical Investigation. ChemPlusChem, 2016, 81, 202-212. | 2.8 | 70 | | 59 | First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theoretical Chemistry Accounts, 2009, 124, 385-394. | 1.4 | 69 | | 60 | An improved method for preparation of SrTiO3 nanoparticles. Materials Chemistry and Physics, 2011, 125, 168-173. | 4.0 | 69 | | 61 | Transition structure for hydride transfer to pyridinium cation from methanolate. Modeling of LADH catalyzed reaction. Journal of the American Chemical Society, 1988, 110, 4046-4047. | 13.7 | 68 | | 62 | Quantum-mechanical analysis of the equation of state of anataseTiO2. Physical Review B, 2001, 64, . | 3.2 | 68 | | 63 | Theoretical Study on the Molecular Mechanism for the Reaction of VO2+ with C2H4. Journal of Physical Chemistry A, 2003, 107, 3107-3120. | 2.5 | 68 | | 64 | On the photoluminescence behavior of samarium-doped strontium titanate nanostructures under UV light. A structural and electronic understanding. Physical Chemistry Chemical Physics, 2010, 12, 7566. | 2.8 | 68 | | 65 | A theoretical study of the Meyer-Schuster reaction mechanism: minimum-energy profile and properties of transition-state structure. Journal of the American Chemical Society, 1988, 110, 666-674. | 13.7 | 67 | | 66 | Curly arrows meet electron density transfers in chemical reaction mechanisms: from electron localization function (ELF) analysis to valence-shell electron-pair repulsion (VSEPR) inspired interpretation. Chemical Communications, 2016, 52, 8183-8195. | 4.1 | 66 | | 67 | Acetone gas sensor based on α-Ag2WO4 nanorods obtained via a microwave-assisted hydrothermal route. Journal of Alloys and Compounds, 2016, 683, 186-190. | 5.5 | 66 | | 68 | Density Functional Theory Study on the Structural and Electronic Properties of Low Index Rutile Surfaces for TiO ₂ /SnO ₂ /TiO ₂ and SnO ₂ /TiO ₂ /SnO ₂ Composite Systems. Journal of Physical Chemistry A, 2008, 112, 8943-8952. | 2.5 | 65 | | 69 | The hierarchy of localization basins: a tool for the understanding of chemical bonding exemplified by the analysis of the VO x and VO x + ($x = 1-4$) systems. Theoretical Chemistry Accounts, 2001, 105, 299-308. | 1.4 | 64 | | 70 | Toward an Understanding of Intermediate- and Short-Range Defects in ZnO Single Crystals. A Combined Experimental and Theoretical Study. Journal of Physical Chemistry A, 2008, 112, 8970-8978. | 2.5 | 64 | | 71 | Structural refinement, growth mechanism, infrared/Raman spectroscopies and photoluminescence properties of PbMoO4 crystals. Polyhedron, 2013, 50, 532-545. | 2.2 | 63 | | 72 | Quantum Mechanics Insight into the Microwave Nucleation of SrTiO ₃ Nanospheres. Journal of Physical Chemistry C, 2012, 116, 24792-24808. | 3.1 | 62 | | # | Article | IF | CITATIONS | |----|---|------|-----------| | 73 | Chemical structure and reactivity by means of quantum chemical topology analysis. Computational and Theoretical Chemistry, 2015, 1053, 17-30. | 2.5 | 62 | | 74 | A theoretical study on cytosine tautomers in aqueous media by using continuum models. Chemical Physics Letters, 2000, 317, 437-443. | 2.6 | 61 | | 75 | DFT Study of the Reaction between VO2+ and C2H6. Organometallics, 2004, 23, 730-739. | 2.3 | 61 | | 76 | Unveiling the Chemical and Morphological Features of Sbâ^'SnO ₂ Nanocrystals by the Combined Use of High-Resolution Transmission Electron Microscopy and ab Initio Surface Energy Calculations. Journal of the American Chemical Society, 2009, 131, 14544-14548. | 13.7 | 61 | | 77 | Following the Molecular Mechanism for the NH ₃ + LiH â†' LiNH ₂ + H ₂ Chemical Reaction: A Study Based on the Joint Use of the Quantum Theory of Atoms in Molecules (QTAIM) and Noncovalent Interaction (NCI) Index. Journal of Physical Chemistry A, 2014, 118, 1663-1672. | 2.5 | 61 | | 78 | Identifying and rationalizing the morphological, structural, and optical properties of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Ag $\langle sub \rangle 2 \langle sub \rangle$ MoO $\langle sub \rangle 4 \langle sub \rangle$ microcrystals, and the formation process of Ag nanoparticles on their surfaces: combining experimental data and first-principles calculations. Science and Technology of Advanced Materials, 2015, 16, 065002. | 6.1 | 61 | | 79 | Toward an Understanding of Molecular Mechanism of Domino Cycloadditions. Density Functional Theory Study of the
Reaction between Hexafluorobut-2-yne andN,Nâ€⁻-Dipyrrolylmethane. Journal of the American Chemical Society, 1998, 120, 1617-1618. | 13.7 | 60 | | 80 | Origin of photoluminescence in SrTiO3: a combined experimental and theoretical study. Journal of Solid State Chemistry, 2004, 177, 3879-3885. | 2.9 | 60 | | 81 | Towards understanding of magnetic interactions within a series of tetrathiafulvalene–π conjugated-verdazyl diradical cation system: a density functional theory study. Physical Chemistry Chemical Physics, 2008, 10, 857-864. | 2.8 | 60 | | 82 | Surfactant-Mediated Morphology and Photocatalytic Activity of α-Ag ₂ WO ₄ Material. Journal of Physical Chemistry C, 2018, 122, 8667-8679. | 3.1 | 60 | | 83 | Nucleophilicity Index from Perturbed Electrostatic Potentials. Journal of Physical Chemistry A, 2007, 111, 2442-2447. | 2.5 | 59 | | 84 | Preorganization and Reorganization as Related Factors in Enzyme Catalysis: The Chorismate Mutase Case. Chemistry - A European Journal, 2003, 9, 984-991. | 3.3 | 57 | | 85 | A Theoretical Study on the Reaction Mechanism for the Bergman Cyclization from the Perspective of the Electron Localization Function and Catastrophe Theory. Journal of Physical Chemistry A, 2005, 109, 3687-3693. | 2.5 | 57 | | 86 | A joint study based on the electron localization function and catastrophe theory of the chameleonic and centauric models for the Cope rearrangement of 1,5-hexadiene and its cyano derivatives. Journal of Computational Chemistry, 2005, 26, 1427-1437. | 3.3 | 56 | | 87 | First-Principles Study of Pressure-Induced Phase Transitions and Electronic Properties of Ag ₂ MoO ₄ . Journal of Physical Chemistry C, 2014, 118, 3724-3732. | 3.1 | 56 | | 88 | A QM/MM Study of the Conformational Equilibria in the Chorismate Mutase Active Site. The Role of the Enzymatic Deformation Energy Contribution. Journal of Physical Chemistry B, 2000, 104, 11308-11315. | 2.6 | 54 | | 89 | An electron localization function study of the trimerization of acetylene: Reaction mechanism and development of aromaticity. Chemical Physics Letters, 2005, 406, 393-397. | 2.6 | 54 | | 90 | Elucidating the real-time Ag nanoparticle growth on α-Ag ₂ WO ₄ during electron beam irradiation: experimental evidence and theoretical insights. Physical Chemistry Chemical Physics, 2015, 17, 5352-5359. | 2.8 | 54 | | # | ARTICLE A 3D platform for the morphology modulation of materials: first principles calculations on the | IF | Citations | |-----|--|------|-----------| | 91 | thermodynamic stability and surface structure of metal oxides: Co ₃ O ₄ , <i>i) ±</i> +Fe ₂ O ₃ , and In ₂ O ₃ . Modelling and Simulation in Materials Science and Engineering, 2016, | 2.0 | 53 | | 92 | Mechanism of Antibacterial Activity via Morphology Change of α-AgVO ₃ : Theoretical and Experimental Insights. ACS Applied Materials & Interfaces, 2017, 9, 11472-11481. | 8.0 | 53 | | 93 | Connecting structural, optical, and electronic properties and photocatalytic activity of Ag3PO4:Mo complemented by DFT calculations. Applied Catalysis B: Environmental, 2018, 238, 198-211. | 20.2 | 53 | | 94 | Lithium insertion and mobility in the TiO2-anatase/titanate structure: A periodic DFT study. Journal of Electroanalytical Chemistry, 2005, 581, 216-223. | 3.8 | 52 | | 95 | Theoretical Study of the Gas Phase Decomposition of Glycolic, Lactic, and 2-Hydroxyisobutyric Acids. Journal of the American Chemical Society, 1997, 119, 6415-6422. | 13.7 | 51 | | 96 | Connecting the surface structure, morphology and photocatalytic activity of Ag2O: An in depth and unified theoretical investigation. Applied Surface Science, 2020, 509, 145321. | 6.1 | 51 | | 97 | Spin-Philicity and Spin-Donicity as Auxiliary Concepts To Quantify Spin-Catalysis Phenomena. Journal of Physical Chemistry A, 2002, 106, 5353-5357. | 2.5 | 50 | | 98 | Towards an insight on the photoluminescence of disordered CaWO4 from a joint experimental and theoretical analysis. Journal of Solid State Chemistry, 2005, 178, 1284-1291. | 2.9 | 50 | | 99 | Photoluminescent properties of ZrO2: Tm3+, Tb3+, Eu3+ powders—A combined experimental and theoretical study. Journal of Alloys and Compounds, 2017, 695, 3094-3103. | 5.5 | 50 | | 100 | SnO2 nanocrystals synthesized by microwave-assisted hydrothermal method: towards a relationship between structural and optical properties. Journal of Nanoparticle Research, 2012, 14, 1. | 1.9 | 49 | | 101 | Synthesis, antifungal evaluation and optical properties of silver molybdate microcrystals in different solvents: a combined experimental and theoretical study. Dalton Transactions, 2016, 45, 10736-10743. | 3.3 | 49 | | 102 | Contribution of structural order-disorder to the green photoluminescence of PbWO4. Physical Review B, 2007, 75, . | 3.2 | 48 | | 103 | An Experimental and Computational Study of \hat{l}^2 -AgVO $<$ sub $>3<$ /sub $>$: Optical Properties and Formation of Ag Nanoparticles. Journal of Physical Chemistry C, 2016, 120, 12254-12264. | 3.1 | 48 | | 104 | New insights on the bridge carbon–carbon bond in propellanes: A theoretical study based on the analysis of the electron localization function. Journal of Computational Chemistry, 2007, 28, 857-864. | 3.3 | 47 | | 105 | On the reversed crystal growth of BaZrO3 decaoctahedron: shape evolution and mechanism. CrystEngComm, 2011, 13, 5818. | 2.6 | 47 | | 106 | A Combined Experimental and Theoretical Study on the Formation of Ag Filaments on $\hat{l}^2 \hat{a} \in Ag < sub > 2 < sub > MoO < sub > 4 < sub > Induced by Electron Irradiation. Particle and Particle Systems Characterization, 2015, 32, 646-651.$ | 2.3 | 47 | | 107 | Nonlocal (Pair Site) Reactivity from Second-Order Static Density Response Function: Gas- and Solution-Phase Reactivity of the Acetaldehyde Enolate as a Test Case. Journal of Physical Chemistry A, 1999, 103, 1367-1375. | 2.5 | 46 | | 108 | An experimental and theoretical investigation on the optical and photocatalytic properties of ZnS nanoparticles. Journal of Physics and Chemistry of Solids, 2017, 103, 179-189. | 4.0 | 46 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 109 | A Comparative Study of Claisen and Cope Rearrangements Catalyzed by Chorismate Mutase. An Insight into Enzymatic Efficiency:Â Transition State Stabilization or Substrate Preorganization?. Journal of the American Chemical Society, 2004, 126, 311-319. | 13.7 | 45 | | 110 | A theoretical study on the photoluminescence of SrTiO3. Chemical Physics Letters, 2010, 493, 141-146. | 2.6 | 45 | | 111 | Insight into the Effects of Fe Addition on the Local Structure and Electronic Properties of SrTiO ₃ . Journal of Physical Chemistry C, 2014, 118, 4930-4940. | 3.1 | 45 | | 112 | Synthesis and morphological transformation of BaWO4 crystals: Experimental and theoretical insights. Ceramics International, 2016, 42, 10913-10921. | 4.8 | 45 | | 113 | Magnetism and multiferroic properties at MnTiO3 surfaces: A DFT study. Applied Surface Science, 2018, 452, 463-472. | 6.1 | 45 | | 114 | Understanding the White-Emitting CaMoO ₄ Co-Doped Eu ³⁺ , Tb ³⁺ , and Tm ³⁺ Phosphor through Experiment and Computation. Journal of Physical Chemistry C, 2019, 123, 18536-18550. | 3.1 | 45 | | 115 | A theoretical study of water adsorption on (10-10) and (0001) ZnO surfaces: molecular cluster, basis set and effective core potential dependence. Computational and Theoretical Chemistry, 1995, 330, 347-351. | 1.5 | 44 | | 116 | Theoretical Study of the Elimination Kinetics of Carboxylic Acid Derivatives in the Gas Phase. Decomposition of 2-Chloropropionic Acid. Journal of Physical Chemistry A, 1997, 101, 1859-1865. | 2.5 | 44 | | 117 | Transition structure selectivity in enzyme catalysis: a QM/MM study of chorismate mutase. Theoretical Chemistry Accounts, 2001, 105, 207-212. | 1.4 | 44 | | 118 | DFT Study of Oxygen Adsorption on Modified Nanostructured Gold Pyramids. Journal of Physical Chemistry B, 2005, 109, 7624-7630. | 2.6 | 44 | | 119 | Nature of the ringâ€closure process along the rearrangement of octaâ€1,3,5,7â€tetraene to cyclooctaâ€1,3,5â€triene from the perspective of the electron localization function and catastrophe theory. Journal of Computational Chemistry, 2012, 33, 748-756. | 3.3 | 44 | | 120 | Improving the ozone gas-sensing properties of CuWO4 nanoparticles. Journal of Alloys and Compounds, 2018, 748, 411-417. | 5.5 | 44 | | 121 | Unvealing the role of \hat{I}^2 -Ag2MoO4 microcrystals to the improvement of antibacterial activity. Materials Science and Engineering C, 2020, 111, 110765. | 7.3 | 44 | | 122 | Enzyme catalysis and transition structures in vacuo. Transition structures for the enolization, carboxylation and oxygenation reactions in ribulose-1,5-bisphosphate carboxylase/oxygenase enzyme (Rubisco). Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2365-2374. | 1.7 | 43 | | 123 | Quantum-mechanical simulation of MgAl2O4 under high pressure. Physical Review B, 2002, 66, . | 3.2 | 43 | | 124 | On the Nature of the Transition State in CatecholO-Methyltransferase. A Complementary Study Based on Molecular Dynamics and Potential Energy Surface Explorations. Journal of the American Chemical Society, 2005, 127, 10648-10655. | 13.7 | 43 | | 125 | Toward an Understanding of the Catalytic Role of Hydrogen-Bond Donor Solvents in the Hetero-Dielsâ^'Alder Reaction between Acetone and Butadiene Derivative. Journal of Physical Chemistry A, 2005, 109, 10438-10444. | 2.5 | 43 | | 126 | Migration of the
subsurfaceCimpurity inPd(111). Physical Review B, 2005, 71, . | 3.2 | 43 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 127 | Oxygen adsorption on gold nanofacets and model clusters. Journal of Chemical Physics, 2006, 125, 054703. | 3.0 | 43 | | 128 | A <scp>DFT</scp> Study of Structural and Electronic Properties of <scp><scp>ZnS</scp></scp> Polymorphs and its Pressureâ€Induced Phase Transitions. Journal of the American Ceramic Society, 2014, 97, 4011-4018. | 3.8 | 43 | | 129 | Electronic aspects of LADH catalytic mechanism. International Journal of Quantum Chemistry, 1991, 39, 767-786. | 2.0 | 42 | | 130 | Theoretical Study of Transition Structures for Intramolecular Hydrogen Transfer in Molecular Models Representing D-Ribulose 1,5-Bisphosphate. A Possible Molecular Mechanism for the Enolization Step in Rubisco. The Journal of Physical Chemistry, 1994, 98, 4821-4830. | 2.9 | 42 | | 131 | H2O and H2 interaction with ZnO surfaces: A MNDO, AM1, and PM3 theoretical study with large cluster models. International Journal of Quantum Chemistry, 1996, 57, 861-870. | 2.0 | 42 | | 132 | A theoretical analysis of the TiO2/Sn doped (110) surface properties. Surface Science, 2005, 580, 71-79. | 1.9 | 42 | | 133 | Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Scientific Reports, 2018, 8, 1884. | 3.3 | 42 | | 134 | Experimental and theoretical study to explain the morphology of CaMoO 4 crystals. Journal of Physics and Chemistry of Solids, 2018, 114, 141-152. | 4.0 | 42 | | 135 | Theoretical approach for determining the relation between the morphology and surface magnetism of Co3O4. Journal of Magnetism and Magnetic Materials, 2018, 453, 262-267. | 2.3 | 42 | | 136 | A Theoretical Study of the Reaction between Cyclopentadiene and Protonated Imine Derivatives:Â A Shift from a Concerted to a Stepwise Molecular Mechanism. Journal of Organic Chemistry, 2001, 66, 6151-6157. | 3.2 | 41 | | 137 | Topological analysis of the bonds in incomplete cuboidal [Mo3S4] clusters. New Journal of Chemistry, 2002, 26, 844-850. | 2.8 | 41 | | 138 | An electron localization function and catastrophe theory analysis on the molecular mechanism of gas-phase identity SN2 reactions. Theoretical Chemistry Accounts, 2008, 120, 341-349. | 1.4 | 41 | | 139 | Computational design of biological catalysts. Chemical Society Reviews, 2008, 37, 2634. | 38.1 | 41 | | 140 | Flexural behavior and water absorption of asymmetrical sandwich composites from natural fibers and cork agglomerate core. Materials Letters, 2014, 127, 48-52. | 2.6 | 41 | | 141 | In situ Transmission Electron Microscopy observation of Ag nanocrystal evolution by surfactant free electron-driven synthesis. Scientific Reports, 2016, 6, 21498. | 3.3 | 41 | | 142 | SiO2-Ag Composite as a Highly Virucidal Material: A Roadmap that Rapidly Eliminates SARS-CoV-2. Nanomaterials, 2021, 11, 638. | 4.1 | 41 | | 143 | Ag Nanoparticles/α-Ag2WO4 Composite Formed by Electron Beam and Femtosecond Irradiation as Potent Antifungal and Antitumor Agents. Scientific Reports, 2019, 9, 9927. | 3.3 | 40 | | 144 | Theoretical study of solvation effects on chemical reactions. A combined quantum chemical/Monte Carlo study of the Meyer-Schuster reaction mechanism in water. Journal of the American Chemical Society, 1989, 111, 829-835. | 13.7 | 39 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 145 | Prediction of Gold Zigzag Nanotube-like Structure Based on Au32Units: A Quantum Chemical Study. Journal of Physical Chemistry C, 2007, 111, 10342-10346. | 3.1 | 39 | | 146 | A Quantum Mechanics/Molecular Mechanics Study of the Protein–Ligand Interaction for Inhibitors of HIV-1 Integrase. Chemistry - A European Journal, 2007, 13, 7715-7724. | 3.3 | 38 | | 147 | CaSO ₄ and Its Pressure-Induced Phase Transitions. A Density Functional Theory Study. Inorganic Chemistry, 2012, 51, 1751-1759. | 4.0 | 38 | | 148 | Formation of Ag Nanoparticles on Î ² -Ag ₂ WO ₄ through Electron Beam Irradiation: A Synergetic Computational and Experimental Study. Inorganic Chemistry, 2016, 55, 8661-8671. | 4.0 | 38 | | 149 | Combined Experimental and Theoretical Study to Understand the Photoluminescence of Sr1-xTiO3-x. Journal of Physical Chemistry B, 2004, 108, 9221-9227. | 2.6 | 37 | | 150 | Strain behavior of lanthanum modified BiFeO3 thin films prepared via soft chemical method. Journal of Applied Physics, 2008, 104, 104115. | 2.5 | 37 | | 151 | Microwave-hydrothermal synthesis of single-crystalline Co3O4 spinel nanocubes. CrystEngComm, 2013, 15, 7443. | 2.6 | 37 | | 152 | Theoretical study of the structure and stability of NbxOy and NbxOy+ (x=1â€"3; y=2â€"5,â€^7,â€^8) clusters. Chemical Physics Letters, 1998, 287, 620-626. | 2.6 | 36 | | 153 | The nature of the chemical bond in di- and polynuclear metal cluster complexes as depicted by the analysis of the electron localization function. Comptes Rendus Chimie, 2005, 8, 1400-1412. | 0.5 | 36 | | 154 | Molecular oxygen adsorption on electropositive nano gold tips. Chemical Physics Letters, 2006, 421, 433-438. | 2.6 | 36 | | 155 | α-Ag _{2â€"2<i>x</i>} Zn _{<i>x</i>} WO ₄ (0 ≠ <i>x</i> ≠0.25) Solid Solutions: Structure, Morphology, and Optical Properties. Inorganic Chemistry, 2017, 56, 7360-7372. | 4.0 | 36 | | 156 | Curly arrows, electron flow, and reaction mechanisms from the perspective of the bonding evolution theory. Physical Chemistry Chemical Physics, 2017, 19, 29031-29046. | 2.8 | 36 | | 157 | Structural properties and self-activated photoluminescence emissions in hydroxyapatite with distinct particle shapes. Ceramics International, 2018, 44, 236-245. | 4.8 | 36 | | 158 | Theoretical study of ZnO (1010) and Cu/ZnO (1010) surfaces. Chemical Physics Letters, 2001, 338, 224-230. | 2.6 | 35 | | 159 | A DFT study of the Diels–Alder reaction between methyl acrolein derivatives and cyclopentadiene.
Understanding the effects of Lewis acids catalysts based on sulfur containing boron heterocycles.
Tetrahedron, 2006, 62, 5502-5509. | 1.9 | 35 | | 160 | A Theoretical Study on the Pressure-Induced Phase Transitions in the Inverse Spinel Structure Zn ₂ SnO ₄ . Journal of Physical Chemistry C, 2011, 115, 7740-7746. | 3.1 | 35 | | 161 | Anomalous oriented attachment growth behavior on SnO2 nanocrystals. Chemical Communications, 2011, 47, 3117. | 4.1 | 35 | | 162 | Tuning the Morphological, Optical, and Antimicrobial Properties of α-Ag ₂ WO ₄ Microcrystals Using Different Solvents. Crystal Growth and Design, 2017, 17, 6239-6246. | 3.0 | 35 | | # | Article | IF | Citations | |-----|--|------------------|--------------------| | 163 | Radioluminescence properties of decaoctahedral BaZrO3. Scripta Materialia, 2011, 64, 118-121. | 5.2 | 34 | | 164 | Modeling the atomic-scale structure, stability, and morphological transformations in the tetragonal phase of LaVO4. Chemical Physics Letters, 2016, 660, 87-92. | 2.6 | 34 | | 165 | Structure, morphology and photoluminescence emissions of ZnMoO4: RE $3+=Tb3+-Tm3+-X$ Eu $3+(x\hat{A}=1,)$ Tj E Compounds, 2018, 750, 55-70. | ETQq1 1 0
5.5 |).784314 rgB
34 | | 166 | Theoretical study of the solvent effects on the mechanisms of addition of dimethyl acetylenedicarboxylate to 1-methyl-2-vinylpyrrole. Tetrahedron, 1996, 52, 10693-10704. | 1.9 | 33 | | 167 | Comparative theoretical study of transition structures, barrier heights, and reaction energies for the intramolecular tautomerization in acetaldehyde/vinyl alcohol and acetaldimine/vinylamine systems. International Journal of Quantum Chemistry, 1998, 66, 9-24. | 2.0 | 33 | | 168 | Theoretical Study of the Mechanisms for the Alkoxyacetic Acids Decomposition. Journal of Physical Chemistry A, 1999, 103, 3935-3943. | 2.5 | 33 | | 169 | Density functional study of the 5-methylcytosine tautomers. Chemical Physics, 2001, 264, 333-340. | 1.9 | 33 | | 170 | Effect of electron-withdrawing substituents on the electrophilicity of carbonyl carbons. Tetrahedron, 2005, 61, 417-422. | 1.9 | 33 | | 171 | Theoretical kinetic isotope effects for the hydride-transfer step in lactate dehydrogenase. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1703-1707. | 1.7 | 32 | | 172 | On Transition Structures for Hydride Transfer Step: A Theoretical Study of the Reaction Catalyzed by Dihydrofolate Reductase Enzyme. Bioorganic Chemistry, 1996, 24, 10-18. | 4.1 | 32 | | 173 | Ab InitioStudy of Stereo- and Regioselectivity in the Dielsâ-'Alder Reaction between 2-Phenylcyclopentadiene and α-(Methylthio)acrylonitrile. Journal of Organic Chemistry, 1997, 62, 1775-1778. | 3.2 | 32 | | 174 | Potential energy surface for the decomposition of mandelic acid. Chemical Physics Letters, 1997, 274, 422-428. | 2.6 | 32 | | 175 | Relationship between nucleophilicity/electrophilicity indices and reaction mechanisms for the nucleophilic substitution reactions of carbonyl compounds. Journal of Physical Organic Chemistry, 2004, 17, 273-281. | 1.9 | 32 | | 176 | How a Quantum Chemical Topology Analysis Enables Prediction of Electron Density Transfers in Chemical Reactions. The Degenerated Cope Rearrangement of Semibullvalene. Journal of Physical
Chemistry Letters, 2012, 3, 2500-2505. | 4.6 | 32 | | 177 | Lewis Acid and Substituent Effects on the Molecular Mechanism for the Nazarov Reaction of Penta-1,4-dien-3-one and Derivatives. A Topological Analysis Based on the Combined Use of Electron Localization Function and Catastrophe Theory. Journal of Chemical Theory and Computation, 2007, 3, 816-823. | 5.3 | 31 | | 178 | Origin of the Absorption Maxima of the Photoactive Yellow Protein Resolved via Ab Initio Multiconfigurational Methods. Journal of Physical Chemistry B, 2008, 112, 7153-7156. | 2.6 | 31 | | 179 | Correlation between structural and electronic order–disorder effects and optical properties in ZnO nanocrystals. Journal of Materials Chemistry C, 2014, 2, 10164-10174. | 5.5 | 31 | | 180 | Theoretical and Experimental Insight on Ag ₂ CrO ₄ Microcrystals: Synthesis, Characterization, and Photoluminescence Properties. Inorganic Chemistry, 2016, 55, 8961-8970. | 4.0 | 31 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 181 | Formation of Ag nanoparticles on metastable \hat{l}^2 -Ag2WO4 microcrystals induced by electron irradiation. Chemical Physics Letters, 2016, 644, 68-72. | 2.6 | 31 | | 182 | On the outside looking in: rethinking the molecular mechanism of 1,3-dipolar cycloadditions from the perspective of bonding evolution theory. The reaction between cyclic nitrones and ethyl acrylate. Physical Chemistry Chemical Physics, 2017, 19, 18288-18302. | 2.8 | 31 | | 183 | The nature of the Au–Rg bond in the [AuRg 4] 2+ (Rg=Ar, Kr and Xe) molecules. Chemical Physics Letters, 2002, 356, 483-489. | 2.6 | 30 | | 184 | Photoluminescent behavior of SrZrO3/SrTiO3 multilayer thin films. Chemical Physics Letters, 2009, 473, 293-298. | 2.6 | 30 | | 185 | Toward Understanding the Photochemistry of Photoactive Yellow Protein: A CASPT2/CASSCF and Quantum Theory of Atoms in Molecules Combined Study of a Model Chromophore in Vacuo. Journal of Chemical Theory and Computation, 2009, 5, 3032-3038. | 5.3 | 30 | | 186 | Manufacture of Green-Composite Sandwich Structures with Basalt Fiber and Bioepoxy Resin. Advances in Materials Science and Engineering, 2013, 2013, 1-9. | 1.8 | 30 | | 187 | <i>In situ</i> growth of Ag nanoparticles on <i>α</i> -Ag ₂ WO ₄ under electron irradiation: probing the physical principles. Nanotechnology, 2016, 27, 225703. | 2.6 | 30 | | 188 | Synthesis and evaluation of \hat{l}_{\pm} -Ag2WO4 as novel antifungal agent. Chemical Physics Letters, 2017, 674, 125-129. | 2.6 | 30 | | 189 | Tailoring the Bactericidal Activity of Ag Nanoparticles/α-Ag ₂ WO ₄ Composite Induced by Electron Beam and Femtosecond Laser Irradiation: Integration of Experiment and Computational Modeling. ACS Applied Bio Materials, 2019, 2, 824-837. | 4.6 | 30 | | 190 | A theoretical study of the singlet-triplet energy gap dependence upon rotation and pyramidalization for 1,2-dihydroxyethylene: a simple model to study the enediol moiety in Rubisco's substrate. The Journal of Physical Chemistry, 1993, 97, 7888-7893. | 2.9 | 29 | | 191 | Transition state structure invariance to model system size and calculation levels: a QM/MM study of the carboxylation step catalyzed by Rubisco. Theoretical Chemistry Accounts, 1999, 101, 228-233. | 1.4 | 29 | | 192 | Effect of Coverage and Defects on the Adsorption of Propanethiol on Au(111) Surface: A Theoretical Study. Langmuir, 2011, 27, 14514-14521. | 3.5 | 29 | | 193 | Towards enhancing the magnetic properties by morphology control of ATiO3 (A = Mn, Fe, Ni) multiferroic materials. Journal of Magnetism and Magnetic Materials, 2019, 475, 544-549. | 2.3 | 29 | | 194 | Ag Nanoparticles/AgX (X=Cl, Br and I) Composites with Enhanced Photocatalytic Activity and Low Toxicological Effects. ChemistrySelect, 2020, 5, 4655-4673. | 1.5 | 29 | | 195 | A theoretical study of (1010) and (0001) ZnO surfaces: molecular cluster model, basis set and effective core potential dependence. Computational and Theoretical Chemistry, 1995, 330, 301-306. | 1.5 | 28 | | 196 | Molecular Structure of the Molybdenum Oxo-Diperoxo Compound MoO(O2)2(OPy)(H2O):Â A Computational and X-ray Study. Inorganic Chemistry, 2001, 40, 6022-6025. | 4.0 | 28 | | 197 | Mechanistic Insights into the Reaction between VO2+ and Propene Based on a DFT Study.
Organometallics, 2006, 25, 1643-1653. | 2.3 | 28 | | 198 | Catalysis in Glycine N-Methyltransferase: Testing the Electrostatic Stabilization and Compression Hypothesis. Biochemistry, 2006, 45, 14917-14925. | 2.5 | 28 | | # | Article | IF | CITATIONS | |-----|---|------------------|-----------------| | 199 | Mechanism and Plasticity of Isochorismate Pyruvate Lyase: A Computational Study. Journal of the American Chemical Society, 2009, 131, 16156-16161. | 13.7 | 28 | | 200 | Relationship between Crystal Shape, Photoluminescence, and Local Structure in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>SrTiby Microwave-Assisted Hydrothermal Method. Journal of Nanomaterials, 2012, 2012, 1-6.</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:math> | O ⊄m ml:n | nte x8 > | | 201 | Structural and Electronic Effects of Incorporating Mn in TiO ₂ Films Grown by Sputtering: Anatase versus Rutile. Journal of Physical Chemistry C, 2012, 116, 8753-8762. | 3.1 | 28 | | 202 | Binding Analysis of Some Classical Acetylcholinesterase Inhibitors: Insights for a Rational Design Using Free Energy Perturbation Method Calculations with QM/MM MD Simulations. Journal of Chemical Information and Modeling, 2017, 57, 958-976. | 5.4 | 28 | | 203 | An ab initio perturbed ion study of structural properties of TiO2, SnO2 and GeO2 rutile lattices. Chemical Physics, 1996, 212, 381-391. | 1.9 | 27 | | 204 | Understanding the Nature of the Molecular Mechanisms Associated with the Competitive Lewis Acid Catalyzed[4+2] and[4+3] Cycloadditions between Arylidenoxazolone Systems and Cyclopentadiene: A DFT Analysis. Chemistry - A European Journal, 2004, 10, 4742-4749. | 3.3 | 27 | | 205 | A Theoretical Study on the Electronic Structure of Auâ^ $^{\circ}$ XO(0,-1,+1)Â(X = C, N, and O) Complexes:Â Effect of an External Electric Field. Journal of Physical Chemistry A, 2007, 111, 13255-13263. | 2.5 | 27 | | 206 | Understanding the formation and growth of Ag nanoparticles on silver chromate induced by electron irradiation in electron microscope: A combined experimental and theoretical study. Journal of Solid State Chemistry, 2016, 239, 220-227. | 2.9 | 27 | | 207 | Straining the double bond in 1,2-dihydroxyethylene. A simple theoretical model for the enediol moiety in Rubisco's substrate and analogs. Chemical Physics Letters, 1992, 198, 515-520. | 2.6 | 26 | | 208 | Transition structure for the hydride transfer reaction from formate anion to cyclopropenyl cation: a simple theoretical model for the reaction catalyzed by formate dehydrogenase. Chemical Physics Letters, 1992, 189, 395-400. | 2.6 | 26 | | 209 | A Theoretical Study on the Gas Phase Reactions of the Anions NbO3-, NbO5-, and NbO2(OH)2- with H2O and O2. Journal of Physical Chemistry A, 2004, 108, 10850-10860. | 2.5 | 26 | | 210 | Electronic fluxes during dielsâ€alder reactions involving 1,2â€benzoquinones: mechanistic insights from the analysis of electron localization function and catastrophe theory. Journal of Computational Chemistry, 2012, 33, 2400-2411. | 3.3 | 26 | | 211 | Electronic structure and magnetic properties of FeWO4 nanocrystals synthesized by the microwave-hydrothermal method. Materials Characterization, 2012, 73, 124-129. | 4.4 | 26 | | 212 | A DFT investigation of the role of oxygen vacancies on the structural, electronic and magnetic properties of ATiO ₃ (A = Mn, Fe, Ni) multiferroic materials. Physical Chemistry Chemical Physics, 2018, 20, 28382-28392. | 2.8 | 26 | | 213 | Electronic aspects of the hydride transfer mechanism.Abinitioanalytical gradient studies of the cyclopropenylâ€cation/lithium hydride model reactant system. Journal of Chemical Physics, 1985, 83, 4673-4682. | 3.0 | 25 | | 214 | A Theoretical Study of Addition of Organomagnesium Reagents to Chiral \hat{l}_{\pm} -Alkoxy Carbonyl Compounds. Journal of Organic Chemistry, 1996, 61, 3467-3475. | 3.2 | 25 | | 215 | A combined experimental and theoretical study of the unimolecular elimination kinetics of 2-alkoxypropionic acids in the gas phase. Chemical Physics, 1999, 246, 1-12. | 1.9 | 25 | | 216 | DFT study of the water-assisted tautomerization process between hydrated oxide, MO(H2O)+, and dihydroxide, M(OH)2+, cations (M=V, Nb and Ta). Chemical Physics Letters, 2004, 384, 56-62. | 2.6 | 25 | | # | Article | IF | CITATIONS | |-----|--|-----------------------------|-----------| | 217 | Nucleofugality index in α-elimination reactions. Chemical Physics Letters, 2007, 439, 177-182. | 2.6 | 25 | | 218 | Intercalation processes and diffusion paths of lithium ions in spinel-type structured <mml:math display="inline"
xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">Li</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>+</mml:mo><mml:mi>xTi</mml:mi><mml:mi><mml:mn></mml:mn></mml:mi></mml:mrow></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mi><mml:mn></mml:mn></mml:mi></mml:msub></mml:mrow></mml:math> : | l:mi> <td>nl:mrow> </td> | nl:mrow> | | 219 | Density functional theory. Physical Review B, 2008, 77, . Predicting an Improvement of Secondary Catalytic Activity of Promiscuos Isochorismate Pyruvate Lyase by Computational Design. Journal of the American Chemical Society, 2008, 130, 2894-2895. | 13.7 | 25 | | 220 | Insight into Copperâ€Based Catalysts: Microwaveâ€Assisted Morphosynthesis, Inâ€Situ Reduction Studies, and Dehydrogenation of Ethanol. ChemCatChem, 2011, 3, 839-843. | 3.7 | 25 | | 221 | Am1 and pm3 transition structure for the hydride transfer. A model of reaction catalyzed by dihydrofolate reductase. Computational and Theoretical Chemistry, 1995, 330, 411-416. | 1.5 | 24 | | 222 | A theoretical study of the molecular mechanism for the oxidation of methanol by PQQ. Journal of the American Chemical Society, 1995 , 117 , 8807 - 8815 . | 13.7 | 24 | | 223 | On Transition Structures for Hydride Transfer Step in Enzyme Catalysis. A Comparative Study on Models of Glutathione Reductase Derived from Semiempirical, HF, and DFT Methods. Journal of Organic Chemistry, 1996, 61, 7777-7783. | 3.2 | 24 | | 224 | A Theoretical Study of the Favorskii Rearrangement. Calculation of Gas-Phase Reaction Paths and Solvation Effects on the Molecular Mechanism for the Transposition of the α-Chlorocyclobutanone. Journal of the American Chemical Society, 1997, 119, 1941-1947. | 13.7 | 24 | | 225 | A B3LYP/6-31G** study on the chlorination of ammonia by hypochlorous acid. Chemical Physics Letters, 2001, 342, 405-410. | 2.6 | 24 | | 226 | Sulfide and Sulfoxide Oxidations by Mono- and Diperoxo Complexes of Molybdenum. A Density Functional Study. Journal of Organic Chemistry, 2003, 68, 5870-5874. | 3.2 | 24 | | 227 | Toward Understanding the Electron Density Distribution in Magnetic Clusters:Â Insight from the ELF and AIM Analyses of Ground-State Fe4. Journal of Physical Chemistry A, 2004, 108, 6025-6031. | 2.5 | 24 | | 228 | Better Understanding of the Ring-Cleavage Process of Cyanocyclopropyl Anionic Derivatives. A Theoretical Study Based on the Electron Localization Function. Journal of Organic Chemistry, 2006, 71, 754-762. | 3.2 | 24 | | 229 | Computer-Aided Rational Design of Catalytic Antibodies: The 1F7 Case. Angewandte Chemie - International Edition, 2007, 46, 286-290. | 13.8 | 24 | | 230 | Effects of chemical substitution on the structural and optical properties of $\hat{l}\pm-Ag2\hat{a}^2xNixWO4(0 \hat{a}% x \hat{a}% 0.08) solid solutions. Physical Chemistry Chemical Physics, 2016, 18, 21966-21975.$ | 2.8 | 24 | | 231 | On the morphology of BaMoO ₄ crystals: A theoretical and experimental approach. Crystal Research and Technology, 2016, 51, 634-644. | 1.3 | 24 | | 232 | Synthesis and characterization of metastable \hat{l}^2 -Ag ₂ WO ₄ : an experimental and theoretical approach. Dalton Transactions, 2016, 45, 1185-1191. | 3.3 | 24 | | 233 | A novel approach to obtain highly intense self-activated photoluminescence emissions in hydroxyapatite nanoparticles. Journal of Solid State Chemistry, 2017, 249, 64-69. | 2.9 | 24 | | 234 | Geometry, electronic structure, morphology, and photoluminescence emissions of BaW1-xMoxO4 (x†= â€0, 0.25, 0.50, 0.75, and 1) solid solutions: Theory and experiment in concert. Applied Surface Science, 2019, 463, 907-917. | 6.1 | 24 | | # | Article | IF | Citations | |-----|---|------------------|----------------------| | 235 | Microwave-Driven Hexagonal-to-Monoclinic Transition in BiPO ₄ : An In-Depth Experimental Investigation and First-Principles Study. Inorganic Chemistry, 2020, 59, 7453-7468. | 4.0 | 24 | | 236 | Towards an explanation of carboxylation/oxygenation bifunctionality in Rubisco. Transition structure for the carboxylation reaction of 2,3,4-pentanetriol. Molecular Engineering, 1992, 2, 37-41. | 0.2 | 23 | | 237 | Ab initio cluster-in-the-lattice description of vanadium-doped zircon: analysis of the impurity centers in vanadium(4+)-doped zircon (ZrSiO4). The Journal of Physical Chemistry, 1993, 97, 2555-2559. | 2.9 | 23 | | 238 | Ab initio study of CO and H2 interaction on ZnO surfaces using a small cluster model. Computational and Theoretical Chemistry, 1997, 398-399, 457-466. | 1.5 | 23 | | 239 | A Quantum Mechanic/Molecular Mechanic Study of the Wild-Type and N155S Mutant HIV-1 Integrase
Complexed with Diketo Acid. Biophysical Journal, 2008, 94, 2443-2451. | 0.5 | 23 | | 240 | Olefin Epoxidation by Molybdenum Peroxo Compound: Molecular Mechanism Characterized by the Electron Localization Function and Catastrophe Theory. Journal of Physical Chemistry A, 2011, 115, 514-522. | 2.5 | 23 | | 241 | Combined Theoretical and Experimental Analysis of the Bonding in the Heterobimetallic Cubane-Type Mo3NiS4and Mo3CuS4Core Clusters. Inorganic Chemistry, 2007, 46, 2159-2166. | 4.0 | 22 | | 242 | Synthesis, optical and ferroelectric properties of PZT thin films: experimental and theoretical investigation. Journal of Materials Chemistry, 2012, 22, 6587. | 6.7 | 22 | | 243 | A joint experimental and theoretical study on the electronic structure and photoluminescence properties of Al2(WO4)3 powders. Journal of Molecular Structure, 2015, 1081, 381-388. | 3.6 | 22 | | 244 | First-Principles Study on Polymorphs of AgVO ₃ : Assessing to Structural Stabilities and Pressure-Induced Transitions. Journal of Physical Chemistry C, 2017, 121, 27624-27642. | 3.1 | 22 | | 245 | Uncovering the metastable \hat{l}^3 -Ag ₂ WO ₄ phase: a joint experimental and theoretical study. RSC Advances, 2017, 7, 5610-5620. | 3.6 | 22 | | 246 | Experimental and theoretical study of the energetic, morphological, and photoluminescence properties of CaZrO ₃ :Eu ³⁺ . CrystEngComm, 2018, 20, 5519-5530. | 2.6 | 22 | | 247 | Joint Theoretical and Experimental Study on the La Doping Process in In ₂ O ₃ : Phase Transition and Electrocatalytic Activity. Inorganic Chemistry, 2019, 58, 11738-11750. | 4.0 | 22 | | 248 | α-AgVO ₃ Decorated by Hydroxyapatite (Ca ₁₀ 6 ₆ (OH) ₂): Tuning Its Photoluminescence Emissions and Bactericidal Activity. Inorganic Chemistry, 2019, 58, 5900-5913. | 4.0 | 22 | | 249 | Catalytic Hydrogenation of Azobenzene in the Presence of a Cuboidal Mo ₃ S ₄ Cluster via an Uncommon Sulfur-Based H ₂ Activation Mechanism. ACS Catalysis, 2021, 11, 608-614. | 11.2 | 22 | | 250 | Transition structures in vacuo and the theory of enzyme catalysis. Rubisco's catalytic mechanism: a paradigmatic case?. Computational and Theoretical Chemistry, 1995, 342, 131-140. | 1.5 | 21 | | 251 | Theoretical analysis of the energy levels induced by oxygen vacancies and the doping process (Co, Cu) Tj ETQq1 | 1 0.78431
1.5 | .4 <u>rg</u> BT /Ove | | 252 | An atom-in-molecules and electron-localization-function study of the interaction between O 2 and V x O y ($x = 1, 2, y = 1-5$) clusters. Theoretical Chemistry Accounts, 2002, 108, 12-20. | 1.4 | 21 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 253 | Novel SrTi1â^'xFexO3 nanocubes synthesized by microwave-assisted hydrothermal method. CrystEngComm, 2012, 14, 4068. | 2.6 | 21 | | 254 | Effect of polyvinyl alcohol on the shape, photoluminescence and photocatalytic properties of PbMoO4 microcrystals. Materials Science in Semiconductor Processing, 2014, 26, 425-430. | 4.0 | 21 | | 255 | \hat{l}_{\pm} - and \hat{l}^2 -AgVO3 polymorphs as photoluminescent materials: An example of temperature-driven synthesis. Ceramics International, 2018, 44, 5939-5944. | 4.8 | 21 | | 256 | Formation of Ag nanoparticles under electron beam irradiation: Atomistic origins from firstâ€principles calculations. International Journal of Quantum Chemistry, 2018, 118, e25551. | 2.0 | 21 | | 257 | Carbon Nanofibers versus Silver Nanoparticles: Time-Dependent Cytotoxicity, Proliferation, and Gene Expression. Biomedicines, 2021, 9, 1155. | 3.2 | 21 | | 258 | True and Apparent Oxygen Permeabilities of Contact Lenses. Optometry and Vision Science, 1992, 69, 685-690. | 1.2 | 20 | | 259 | Why Do Peroxomolybdenum Complexes Chemoselectively Oxidize the Sulfur Centers of Unsaturated Sulfides and Sulfoxides? A DFT Analysis. European Journal of Organic Chemistry, 2005, 2005, 2406-2415. | 2.4 | 20 | | 260 | Laser and electron beam-induced formation of Ag/Cr structures on Ag $<$ sub $>$ 2 $<$ /sub $>$ CrO $<$ sub $>$ 4 $<$ /sub $>$. Physical Chemistry Chemical Physics, 2019, 21, 6101-6111. | 2.8 | 20 | | 261 | Unconventional Magnetization Generated from Electron Beam and Femtosecond Irradiation on α-Ag ₂ WO ₄ : A Quantum Chemical Investigation. ACS Omega, 2020, 5, 10052-10067. | 3.5 | 20 | | 262 | Reading at exposed surfaces: theoretical insights into photocatalytic activity of ZnWO4., 0, 1, 1005. | | 20 | | 263 | Electronic aspects of the hydride transfer mechanism. Computational and Theoretical Chemistry, 1988, 167, 395-412. | 1.5 | 19 | | 264 | Quantum chemical study of the adsorption of water on zinc oxide surface. Computational and Theoretical Chemistry, 1994, 303, 19-24. | 1.5 | 19 | | 265 | On a quantum theory of chemical reactions and the role of in vacuum transition structures. Primary and secondary sources of enzyme catalysis. Computational and Theoretical Chemistry, 1995, 335, 267-286. | 1.5 | 19 | | 266 | Quantum
Mechanical/Molecular Mechanical Study on the Favorskii Rearrangement in Aqueous Media. Journal of Physical Chemistry B, 2001, 105, 2453-2460. | 2.6 | 19 | | 267 | Theoretical and experimental study of the relation between photoluminescence and structural disorder in barium and strontium titanate thin films. Journal of the European Ceramic Society, 2005, 25, 2337-2340. | 5.7 | 19 | | 268 | Unraveling the Mechanisms of the Selective Oxidation of Methanol to Formaldehyde in Vanadia Supported on Titania Catalyst. Journal of Physical Chemistry C, 2010, 114, 6039-6046. | 3.1 | 19 | | 269 | Hybrid Schemes Based on Quantum Mechanics/Molecular Mechanics Simulations. Advances in Protein Chemistry and Structural Biology, 2011, 85, 81-142. | 2.3 | 19 | | 270 | Dopant Segregation Analysis on Sb:SnO ₂ Nanocrystals. Chemistry - A European Journal, 2011, 17, 11515-11519. | 3.3 | 19 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 271 | Structural and Electronic Properties of Lithiated SnO ₂ . A Periodic DFT Study. Journal of Physical Chemistry C, 2012, 116, 16127-16137. | 3.1 | 19 | | 272 | From Complex Inorganic Oxides to Ag–Bi Nanoalloy: Synthesis by Femtosecond Laser Irradiation. ACS Omega, 2018, 3, 9880-9887. | 3.5 | 19 | | 273 | Palladium doping of In ₂ O ₃ towards a general and selective catalytic hydrogenation of amides to amines and alcohols. Catalysis Science and Technology, 2019, 9, 6965-6976. | 4.1 | 19 | | 274 | Surface-dependent properties of \hat{l} ±-Ag2WO4: a joint experimental and theoretical investigation. Theoretical Chemistry Accounts, 2020, 139, 1. | 1.4 | 19 | | 275 | Modulating the properties of multifunctional semiconductors by means of morphology: Theory meets experiments. Computational Materials Science, 2021, 188, 110217. | 3.0 | 19 | | 276 | HCnN: The largest molecules in the interstellar medium. Journal of Chemical Education, 1990, 67, 905. | 2.3 | 18 | | 277 | A Theoretical Study of Stationary Structures for the Addition of Azide Anion to Tetrofuranosides: Modeling the Kinetic and Thermodynamic Controls by Solvent Effects. The Journal of Physical Chemistry, 1994, 98, 6955-6960. | 2.9 | 18 | | 278 | Toward an Understanding of the Selectivity in Domino Reactions. A DFT Study of the Reaction between Acetylenedicarboxylic Acid and 1,3-Bis(2-furyl)propane. Journal of Organic Chemistry, 2000, 65, 3473-3477. | 3.2 | 18 | | 279 | Photolumiscent Properties of Nanorods and Nanoplates Y2O3:Eu3+. Journal of Fluorescence, 2011, 21, 1431-1438. | 2.5 | 18 | | 280 | Computational Chemistry Meets Experiments for Explaining the Geometry, Electronic Structure, and Optical Properties of Ca ₁₀ V ₆ O ₂₅ . Inorganic Chemistry, 2018, 57, 15489-15499. | 4.0 | 18 | | 281 | How effectively bonding evolution theory retrieves and visualizes curly arrows: The cycloaddition reaction of cyclic nitrones. International Journal of Quantum Chemistry, 2019, 119, e25985. | 2.0 | 18 | | 282 | Surface-dependent photocatalytic and biological activities of Ag2CrO4: Integration of experiment and simulation. Applied Surface Science, 2021, 545, 148964. | 6.1 | 18 | | 283 | Selective Synthesis of \hat{l}_{\pm} -, \hat{l}^2 -, and \hat{l}^3 -Ag ₂ WO ₄ Polymorphs: Promising Platforms for Photocatalytic and Antibacterial Materials. Inorganic Chemistry, 2021, 60, 1062-1079. | 4.0 | 18 | | 284 | Amidine decomposition mechanism. A theoretical study. Computational and Theoretical Chemistry, 1992, 254, 465-472. | 1.5 | 17 | | 285 | Rotational constants and dipole moments of interstellar polyynes: a comparative MP2 and density functional (BP86) study. Chemical Physics, 1996, 206, 57-61. | 1.9 | 17 | | 286 | Transition structures of carbon dioxide fixation, hydration and C2 inversion for a model of Rubisco catalyzed reaction. Chemical Physics Letters, 1997, 278, 291-296. | 2.6 | 17 | | 287 | Theory of non-local (pair site) reactivity from model static-density response functions. Theoretical Chemistry Accounts, 1998, 99, 183-191. | 1.4 | 17 | | 288 | Experimental and theoretical study on the piezoelectric behavior of barium doped PZT. Journal of Materials Science, 1999, 34, 3659-3667. | 3.7 | 17 | | # | Article | IF | Citations | |-----|--|-----|-----------| | 289 | A DFT Study of the Molecular Mechanisms of the Dielsâ-'Alder Reaction between Cyclopentadiene and 3-Phenyl-1-(2-pyridyl)-2-propen-1-one â-' Role of the Zn2+ Lewis Acid Catalyst and Water Solvent. European Journal of Organic Chemistry, 2002, 2002, 2557. | 2.4 | 17 | | 290 | Calculation of binding energy using BLYP/MM for the HIV-1 integrase complexed with the S-1360 and two analogues. Bioorganic and Medicinal Chemistry, 2007, 15, 3818-3824. | 3.0 | 17 | | 291 | A DFT study of methanol dissociation on isolated vanadate groups. Catalysis Today, 2008, 139, 214-220. | 4.4 | 17 | | 292 | Structural, electronic and optical properties of Fe(III) complex with pyridine-2,6-dicarboxylic acid: A combined experimental and theoretical study. Inorganica Chimica Acta, 2014, 416, 200-206. | 2.4 | 17 | | 293 | Joint Use of Bonding Evolution Theory and QM/MM Hybrid Method for Understanding the Hydrogen Abstraction Mechanism via Cytochrome P450 Aromatase. Journal of Chemical Theory and Computation, 2015, 11, 1470-1480. | 5.3 | 17 | | 294 | Laser-induced formation of bismuth nanoparticles. Physical Chemistry Chemical Physics, 2018, 20, 13693-13696. | 2.8 | 17 | | 295 | Computational procedure to an accurate DFT simulation to solid state systems. Computational Materials Science, 2019, 170, 109176. | 3.0 | 17 | | 296 | Theoretical study of cluster models and molecular hydrogen interaction with SnO2 [110] surface. Computational and Theoretical Chemistry, 1995, 335, 167-174. | 1.5 | 16 | | 297 | Piezoelectric behaviour of PZT doped with calcium: a combined experimental and theoretical study. Journal of Materials Science, 1997, 32, 2381-2386. | 3.7 | 16 | | 298 | A quantum-chemical study of transition structures for enolization and oxygenation steps catalyzed by rubisco: on the role of magnesium and carbamylated Lys-201 in opening oxygen capture channel. Chemical Physics Letters, 2000, 323, 29-34. | 2.6 | 16 | | 299 | Lewis Acid Mediated Domino Reaction between 2-Cyclohexenone and Methyl Azide - A DFT Study.
European Journal of Organic Chemistry, 2005, 2005, 4705-4709. | 2.4 | 16 | | 300 | Understanding the chemical reactivity of phenylhalocarbene systems: an analysis based on the spin-polarized density functional theory. Theoretical Chemistry Accounts, 2007, 118, 325-335. | 1.4 | 16 | | 301 | Theoretical Study on the Reaction Mechanism of VO ₂ ⁺ with Propyne in Gas Phase. Journal of Physical Chemistry A, 2008, 112, 1808-1816. | 2.5 | 16 | | 302 | Quantum mechanical modeling of excited electronic states and their relationship to cathodoluminescence of BaZrO3. Journal of Applied Physics, 2013, 114, . | 2.5 | 16 | | 303 | Computational Modeling for the Ag Nanoparticle Coalescence Process: A Case of Surface Plasmon Resonance. Journal of Physical Chemistry C, 2017, 121, 7030-7036. | 3.1 | 16 | | 304 | Mechanism of photoluminescence in intrinsically disordered CaZrO3 crystals: First principles modeling of the excited electronic states. Journal of Alloys and Compounds, 2017, 722, 981-995. | 5.5 | 16 | | 305 | Connecting Theory with Experiment to Understand the Sintering Processes of Ag Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 11310-11318. | 3.1 | 16 | | 306 | Polymorphs of ZnV ₂ O ₆ under Pressure: A First-Principle Investigation. Journal of Physical Chemistry C, 2019, 123, 3239-3253. | 3.1 | 16 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 307 | Zinc-substituted Ag2CrO4: A material with enhanced photocatalytic and biological activity. Journal of Alloys and Compounds, 2020, 835, 155315. | 5.5 | 16 | | 308 | Graphene Nanoplatelets: In Vivo and In Vitro Toxicity, Cell Proliferative Activity, and Cell Gene Expression. Applied Sciences (Switzerland), 2022, 12, 720. | 2.5 | 16 | | 309 | A theoretical analysis on the intramolecular proton transfer of \hat{l}_{\pm} -alanine in an aqueous medium. Chemical Physics Letters, 1998, 294, 1-8. | 2.6 | 15 | | 310 | A Theoretical Study of the Molecular Mechanism for the Carboxylation Chemistry in Rubisco. Journal of Physical Chemistry A, 1999, 103, 8725-8732. | 2.5 | 15 | | 311 | Transition Structures ford-Ribulose-1,5-bisphosphate Carboxylase/Oxygenase-Catalyzed Oxygenation Chemistry:Â Role of Carbamylated Lysine in a Model Magnesium Coordination Sphere. Journal of Physical Chemistry A, 2001, 105, 4726-4736. | 2.5 | 15 | | 312 | An AM1 theoretical study on the effect of Zn2+ Lewis acid catalysis on the mechanism of the cycloaddition between 3-phenyl-1-(2-pyridyl)-2-propen-1-one and cyclopentadiene. Tetrahedron, 2002, 58, 2695-2700. | 1.9 | 15 | | 313 | Homofugality: A new reactivity index describing the leaving group ability in homolytic substitution reactions. Chemical Physics Letters, 2006, 424, 437-442. | 2.6 | 15 | | 314 | Disclosing the electronic structure and optical properties of Ag ₄ V ₂ O ₇ crystals: experimental and theoretical insights. CrystEngComm, 2016, 18, 6483-6491. | 2.6 | 15 | | 315 | The role of counter-ions in crystal morphology, surface structure and photocatalytic activity of ZnO crystals grown
onto a substrate. Applied Surface Science, 2020, 529, 147057. | 6.1 | 15 | | 316 | PVC-SiO2-Ag composite as a powerful biocide and anti-SARS-CoV-2 material. Journal of Polymer Research, 2021, 28, 1. | 2.4 | 15 | | 317 | A PM3 Quantum Chemical Study of the Pyruvate Reduction Mechanism Catalyzed by Lactate Dehydrogenase. Bioorganic Chemistry, 1993, 21, 260-274. | 4.1 | 14 | | 318 | CO interaction with ZnO surfaces: an MNDO, AM1 and PM3 theoretical study with large cluster models. Computational and Theoretical Chemistry, 1996, 363, 249-256. | 1.5 | 14 | | 319 | Unimolecular Decomposition of the Anionic Form of N-Chloro-α-glycine. A Theoretical Study. The Journal of Physical Chemistry, 1996, 100, 3561-3568. | 2.9 | 14 | | 320 | Theoretical Study of the Molecular Mechanism for the Oxygenation Chemistry in Rubisco. Journal of Physical Chemistry A, 1999, 103, 6009-6016. | 2.5 | 14 | | 321 | Electronic mechanistic pattern for C–C bond-breaking from transition structures in Rubisco's chemistry. Chemical Physics Letters, 2001, 340, 391-399. | 2.6 | 14 | | 322 | Two state reactivity mechanism for the rearrangement of hydrogen peroxynitrite to nitric acid. Chemical Physics Letters, 2008, 457, 216-221. | 2.6 | 14 | | 323 | Experimental and theoretical approach of nanocrystalline TiO2 with antifungal activity. Chemical Physics Letters, 2013, 577, 114-120. | 2.6 | 14 | | 324 | In Situ Growth of Bi Nanoparticles on NaBiO ₃ , î´-, and β-Bi ₂ O ₃ Surfaces: Electron Irradiation and Theoretical Insights. Journal of Physical Chemistry C, 2019, 123, 5023-5030. | 3.1 | 14 | | # | Article | IF | CITATIONS | |-----|---|--------------------|--------------| | 325 | Designing biocompatible and multicolor fluorescent hydroxyapatite nanoparticles for cell-imaging applications. Materials Today Chemistry, 2019, 14, 100211. | 3.5 | 14 | | 326 | First principle investigation of the exposed surfaces and morphology of \hat{l}^2 -ZnMoO4. Journal of Applied Physics, 2019, 126, 235301. | 2.5 | 14 | | 327 | Rational Design of W-Doped Ag ₃ PO ₄ as an Efficient Antibacterial Agent and Photocatalyst for Organic Pollutant Degradation. ACS Omega, 2020, 5, 23808-23821. | 3.5 | 14 | | 328 | Efficient Ni and Fe doping process in ZnO with enhanced photocatalytic activity: A theoretical and experimental investigation. Materials Research Bulletin, 2022, 152, 111849. | 5.2 | 14 | | 329 | Comparison of Several Semiempirical and ab Initio Methods for Transition State Structure Characterization. Addition of CO2 to CH3NHCONH2. The Journal of Physical Chemistry, 1994, 98, 3664-3668. | 2.9 | 13 | | 330 | On a possible invariance of a transition structure to the effects produced by ancillary H-bonding molecules: Modeling the effects of Ser-48 in the hydride-transfer step of liver alcohol dehydrogenase. International Journal of Quantum Chemistry, 1996, 57, 245-257. | 2.0 | 13 | | 331 | Inactivation of Ribulose-1,5-bisphosphate Carboxylase/Oxygenase during Catalysis. A Theoretical Study of Related Transition Structures. The Journal of Physical Chemistry, 1996, 100, 8543-8550. | 2.9 | 13 | | 332 | Molecular mechanism for oxygenation pathway in Rubisco Chemical Physics Letters, 1998, 294, 87-94. | 2.6 | 13 | | 333 | Conformational equilibrium of chorismate. A QM/MM theoretical study combining statistical simulations and geometry optimisations in gas phase and in aqueous solution. Computational and Theoretical Chemistry, 2003, 632, 197-206. | 1.5 | 13 | | 334 | Composition Dependence of the Energy Barrier for Lithium Diffusion in Amorphous WO[sub 3]. Electrochemical and Solid-State Letters, 2005, 8, J21. | 2.2 | 13 | | 335 | A bonding evolution analysis for the thermal Claisen rearrangement: an experimental and theoretical exercise for testing the electron density flow. Physical Chemistry Chemical Physics, 2018, 20, 535-541. | 2.8 | 13 | | 336 | Increasing the photocatalytic and fungicide activities of Ag3PO4 microcrystals under visible-light irradiation. Ceramics International, 2021, 47, 22604-22614. | 4.8 | 13 | | 337 | Calculation of the relative basicities of methylamines in solution. Chemical Physics Letters, 1990, 169, 297-300. | 2.6 | 12 | | 338 | ZnO clusters models: AnAM1 andMNDO study. International Journal of Quantum Chemistry, 1993, 48, 643-653. | 2.0 | 12 | | 339 | Ab initio and semiempirical MO studies using large cluster models of CO and H2 adsorption and dissociation on ZnO surfaces with the formation of ZnH and OH species. Computational and Theoretical Chemistry, 1997, 397, 147-157. | 1.5 | 12 | | 340 | A density functional theory analysis of the gas and solution phase isomerization reactions of MCN, (M) Tj ETQq0 | 0 0 <u>0 f</u> gBT | /Overlock 10 | | 341 | Density functional theory study of the oxidation of methanol to formaldehyde on a hydrated vanadia cluster. Journal of Computational Chemistry, 2010, 31, 2493-2501. | 3.3 | 12 | | 342 | N, P, and As Ylides and Aza- and Arsa-Wittig Reactions from Topological Analyses of Electron Density. Journal of Physical Chemistry A, 2011, 115, 8316-8326. | 2.5 | 12 | | # | Article | IF | CITATIONS | |-----|---|----------|------------| | 343 | Toward an Understanding of the Hydrogenation Reaction of MO ₂ Gas-Phase Clusters (M =) Tj ETQq1 | 1.0.7843 | 14 rgBT /0 | | 344 | Oxygen Atom Transfer Reactions from Mimoun Complexes to Sulfides and Sulfoxides. A Bonding Evolution Theory Analysis. Journal of Physical Chemistry A, 2014, 118, 6092-6103. | 2.5 | 12 | | 345 | Laser/Electron Irradiation on Indium Phosphide (InP) Semiconductor: Promising Pathways to In Situ Formation of Indium Nanoparticles. Particle and Particle Systems Characterization, 2018, 35, 1800237. | 2.3 | 12 | | 346 | Cuboidal Mo ₃ S ₄ Clusters as a Platform for Exploring Catalysis: A Three-Center Sulfur Mechanism for Alkyne Semihydrogenation. ACS Catalysis, 2018, 8, 7346-7350. | 11.2 | 12 | | 347 | Structure, electronic properties, morphology evolution, and photocatalytic activity in PbMoO $<$ sub $>4sub> and Pb<sub>1â^22sub>Ca<sub>xsub>Sr<sub>xsub>MoO<sub>4sub>(<1>x1>=0.1, 0.2, 0.3, 0.4 and 0.5) solid solutions. Physical Chemistry Chemical Physics, 2020, 22, 25876-25891.$ | 2.8 | 12 | | 348 | Unraveling the relationship between exposed surfaces and the photocatalytic activity of Ag ₃ PO ₄ : an in-depth theoretical investigation. RSC Advances, 2020, 10, 30640-30649. | 3.6 | 12 | | 349 | Quantum-chemical studies of the energy hypersurface for the Meyer—Schuster rearrangement STO-3G calculation of minimum-energy paths. Intermolecular mechanism. Chemical Physics Letters, 1983, 94, 193-197. | 2.6 | 11 | | 350 | A quantum chemical study of protonated intermediates in Rupe and Meyer-Schuster rearrangement mechanisms. Computational and Theoretical Chemistry, 1983, 105, 307-314. | 1.5 | 11 | | 351 | Transition state structures for the molecular mechanism of lactate dehydrogenase enzyme. Journal of the Chemical Society Perkin Transactions II, 1995, , 1551-1558. | 0.9 | 11 | | 352 | Enzyme catalysis: Transition structures and quantum dynamical aspects: Modeling rubisco's oxygenation and carboxylation mechanisms. International Journal of Quantum Chemistry, 2002, 88, 154-166. | 2.0 | 11 | | 353 | A theoretical study on the thermal ring opening rearrangement of 1H-bicyclo[3.1.0]hexa-3,5-dien-2-one: a case of two state reactivity. Physical Chemistry Chemical Physics, 2009, 11, 7189. | 2.8 | 11 | | 354 | Unveiling the efficiency of microwave-assisted hydrothermal treatment for the preparation of SrTiO ₃ mesocrystals. Physical Chemistry Chemical Physics, 2019, 21, 22031-22038. | 2.8 | 11 | | 355 | Revealing the Nature of Defects in α-Ag ₂ WO ₄ by Positron Annihilation Lifetime Spectroscopy: A Joint Experimental and Theoretical Study. Crystal Growth and Design, 2021, 21, 1093-1102. | 3.0 | 11 | | 356 | A theoretical study of the intramolecular solvolytic mechanism of the Meyer–Schuster reaction. MINDO/3 and CNDO/2 calculations of minimum energy paths. Computational and Theoretical Chemistry, 1983, 105, 49-54. | 1.5 | 10 | | 357 | A theoretical study of the addition mechanism of carbon dioxide to methylamine. Modelling CO2–biotin fixation. Journal of the Chemical Society Perkin Transactions II, 1993, , 521-523. | 0.9 | 10 | | 358 | Pseudopotential Periodic Hartree-Fock study of K8In11 and Rb8In11 Systems. The Journal of Physical Chemistry, 1995, 99, 12483-12487. | 2.9 | 10 | | 359 | A PM3 theoretical study of the adsorption and dissociation of water on MgO surfaces. Computational and Theoretical Chemistry, 1998, 426, 199-205. | 1.5 | 10 | | 360 | Transition-state structures for describing the enzyme-catalyzed mechanisms of rubisco. Theoretical Chemistry Accounts, 1999, 101, 234-240. | 1.4 | 10 | | # | Article | IF | CITATIONS | |-----|--|------|-----------| | 361 | Theoretical analysis on TiO2(110)/V surface. International Journal of Quantum Chemistry, 2001, 85, 44-51. | 2.0 | 10 | | 362 | The use of the generator coordinate method for designing basis set. Application to oxo-diperoxo molybdenum complexes. Computational and Theoretical Chemistry, 2002, 589-590, 251-264. | 1.5 | 10 | | 363 | Exploring Two-State Reactivity Pathways in the Cycloaddition Reactions of Triplet
Methylene. Journal of Physical Chemistry A, 2005, 109, 4178-4184. | 2.5 | 10 | | 364 | Inquiry of the electron density transfers in chemical reactions: a complete reaction path for the denitrogenation process of 2,3-diazabicyclo[2.2.1]hept-2-ene derivatives. Physical Chemistry Chemical Physics, 2015, 17, 32358-32374. | 2.8 | 10 | | 365 | Fingerprints of short-range and long-range structure in BaZr $<$ sub $>$ 1 \hat{a} 2 $<$ 5ub $>$ Hf $<$ sub $>$ x $<$ 5ub $>$ O $<$ sub $>$ 3 $<$ 5ub $>$ solid solutions: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2015, 17, 11341-11349. | 2.8 | 10 | | 366 | Synthesis of Cuboctahedral CeO ₂ Nanoclusters and Their Assembly into Cuboid Nanoparticles by Oriented Attachment. ChemNanoMat, 2017, 3, 228-232. | 2.8 | 10 | | 367 | Proofâ€ofâ€Concept Studies Directed toward the Formation of Metallic Ag Nanostructures from Ag 3 PO 4 Induced by Electron Beam and Femtosecond Laser. Particle and Particle Systems Characterization, 2019, 36, 1800533. | 2.3 | 10 | | 368 | Deciphering the Curly Arrow Representation and Electron Flow for the 1,3-Dipolar Rearrangement between Acetonitrile Oxide and $(1 < i > < /i >, 2 < i > < /i >, 4 < i > < /i >) -2 -Cyano-7-oxabicyclo [2.2.1] hept-5-en-2-yl Acetate Derivatives. ACS Omega, 2020, 5, 22215-22225.$ | 3.5 | 10 | | 369 | Identifying and explaining vibrational modes of sanbornite (low-BaSi2O5) and Ba5Si8O21: A joint experimental and theoretical study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 248, 119130. | 3.9 | 10 | | 370 | Structure, Photoluminescence Emissions, and Photocatalytic Activity of Ag ₂ SeO ₃ : A Joint Experimental and Theoretical Investigation. Inorganic Chemistry, 2021, 60, 5937-5954. | 4.0 | 10 | | 371 | Bioactive Ag ₃ PO ₄ /Polypropylene Composites for Inactivation of SARS-CoV-2 and Other Important Public Health Pathogens. Journal of Physical Chemistry B, 2021, 125, 10866-10875. | 2.6 | 10 | | 372 | Garnet Crystal Structures. An ab Initio Perturbed Ion Study. The Journal of Physical Chemistry, 1995, 99, 6493-6501. | 2.9 | 9 | | 373 | Theoretical study of substituent effects in the unimolecular decomposition of N-chloro-?-amino acid anions. Analysis of transition structure and molecular reaction mechanism. Journal of Physical Organic Chemistry, 1996, 9, 371-380. | 1.9 | 9 | | 374 | A theoretical study on the decomposition mechanism of \hat{l}^2 -propiolactone and \hat{l}^2 -butyrolactone. Chemical Physics Letters, 1998, 288, 261-269. | 2.6 | 9 | | 375 | The tandem Diels-Alder reaction between acetylenedicarboxyaldehyde and N,N'-dipyrrolylmethane. An ab initio study of the molecular mechanisms. Computational and Theoretical Chemistry, 1998, 426, 257-262. | 1.5 | 9 | | 376 | A theoretical study of the unimolecular decomposition of N-chloro- \hat{l}_{\pm} -amino acids in aqueous solution. Chemical Physics, 1998, 229, 125-136. | 1.9 | 9 | | 377 | Transition State Structures and Intermediates Modeling Carboxylation Reactions Catalyzed by Rubisco. A Quantum Chemical Study of the Role of Magnesium and Its Coordination Sphere. Journal of Physical Chemistry A, 2001, 105, 9243-9251. | 2.5 | 9 | | 378 | Towards a Rational Design of Antibody Catalysts through Computational Chemistry. Angewandte Chemie - International Edition, 2005, 44, 904-909. | 13.8 | 9 | | # | Article | IF | CITATIONS | |-----|---|-----|-----------| | 379 | Theoretical Study of Catalytic Efficiency of a Diels–Alderase Catalytic Antibody: An Indirect Effect Produced During the Maturation Process. Chemistry - A European Journal, 2008, 14, 596-602. | 3.3 | 9 | | 380 | Synthesis and Molecular and Electronic Structures of a Series of Mo ₃ CoSe ₄ Cluster Complexes with Three Different Metal Electron Populations. Inorganic Chemistry, 2008, 47, 3661-3668. | 4.0 | 9 | | 381 | Prediction of dopant atom distribution on nanocrystals using thermodynamic arguments. Physical Chemistry Chemical Physics, 2014, 16, 1089-1094. | 2.8 | 9 | | 382 | Chemical Bond Formation and Rupture Processes: An Application of DFT–Chemical Pressure Approach. Journal of Physical Chemistry C, 2018, 122, 21216-21225. | 3.1 | 9 | | 383 | Electron beam irradiation for the formation of thick Ag film on Ag ₃ PO ₄ . RSC Advances, 2020, 10, 21745-21753. | 3.6 | 9 | | 384 | Femtosecond-laser-irradiation-induced structural organization and crystallinity of Bi2WO6. Scientific Reports, 2020, 10, 4613. | 3.3 | 9 | | 385 | Connecting morphology and photoluminescence emissions in \hat{l}^2 -Ag2MoO4 microcrystals. Ceramics International, 2022, 48, 3740-3750. | 4.8 | 9 | | 386 | Tailoring Bi2MoO6 by Eu3+ incorporation for enhanced photoluminescence emissions. Journal of Luminescence, 2022, 243, 118675. | 3.1 | 9 | | 387 | Bridging experiment and theory: Morphology, optical, electronic, and magnetic properties of MnWO4. Applied Surface Science, 2022, 600, 154081. | 6.1 | 9 | | 388 | Theoretical rotational constants of MeCnN species. Chemical Physics Letters, 1990, 166, 54-56. | 2.6 | 8 | | 389 | Theoretical study of stationary structures of acetamidine unimolecular decomposition. Chemical Physics Letters, 1990, 169, 509-512. | 2.6 | 8 | | 390 | Local Relaxation Effects in the Crystal Structure of Vanadium-Doped Zircon. An ab Initio Perturbed Ion Calculation. The Journal of Physical Chemistry, 1994, 98, 7741-7744. | 2.9 | 8 | | 391 | Transition structures for hydride transfer reactions in vacuo and their role in enzyme catalysis. Computational and Theoretical Chemistry, 1996, 371, 299-312. | 1.5 | 8 | | 392 | The tandem Diels-Alder reaction of dimethyl acetylenedicarboxylate to bicyclopentadiene. A theoretical study of the molecular mechanisms. Tetrahedron Letters, 1996, 37, 7573-7576. | 1.4 | 8 | | 393 | Towards an understanding of the molecular mechanism of the unimolecular decomposition of the N-chloro- \hat{l} ±-amino acids on the ground and excited states surfaces in aqueous medium. Chemical Physics Letters, 1998, 283, 294-300. | 2.6 | 8 | | 394 | Theoretical Study on the Molecular Mechanism of the Domino Cycloadditions between Dimethyl Acetylenedicarboxylate and Naphthaleno- and Anthracenofuranophane. Journal of Organic Chemistry, 1999, 64, 3026-3033. | 3.2 | 8 | | 395 | A theoretical study on the molecular mechanism for the normal Reimer–Tiemann reaction. Chemical Physics Letters, 2000, 318, 270-275. | 2.6 | 8 | | 396 | Theoretical QM/MM studies of enzymatic pericyclic reactions. Interdisciplinary Sciences, Computational Life Sciences, 2010, 2, 115-131. | 3.6 | 8 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 397 | Molecular mechanism of chorismate mutase activity of promiscuos Mbtl. Theoretical Chemistry Accounts, 2011, 128, 601-607. | 1.4 | 8 | | 398 | Quantum chemical topological analysis of hydrogen bonding in HX…HX and CH ₃ X…HX dimers (XÂ=ÂBr, Cl, F). Molecular Simulation, 2015, 41, 600-609. | 2.0 | 8 | | 399 | Electronic structure and rearrangements of anionic [ClMg(\hat{l} -2-O2C)] \hat{a} and [ClMg(\hat{l} -2-CO2)] \hat{a} complexes: a quantum chemical topology study. Theoretical Chemistry Accounts, 2017, 136, 1. | 1.4 | 8 | | 400 | In situ Formation of Metal Nanoparticles through Electron Beam Irradiation: Modeling Real Materials from First-Principles Calculations. Journal of Material Science & Engineering, 2018, 07, . | 0.2 | 8 | | 401 | Structure, optical properties, and photocatalytic activity of α-Ag2W0.75Mo0.25O4. Materials Research Bulletin, 2020, 132, 111011. | 5.2 | 8 | | 402 | Unraveling a Biomass-Derived Multiphase Catalyst for the Dehydrogenative Coupling of Silanes with Alcohols under Aerobic Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 2912-2928. | 6.7 | 8 | | 403 | An ab initio perturbed ion study of bulk ceria. Chemical Physics Letters, 1994, 221, 249-254. | 2.6 | 7 | | 404 | A Joint Experimental and Theoretical Study on the Mechanisms of Methyl 2-Hydroxypropionate and Methyl 2-Hydroxyisobutyrate Decomposition in the Gas Phase. Journal of Physical Chemistry A, 2004, 108, 996-1007. | 2.5 | 7 | | 405 | Photoluminescence in quasi-amorphous Pb0.8X0.2Zr0.53Ti0.47O3 (X=Ca, Sr and Ba) powders: An optical and structural study. Chemical Physics Letters, 2009, 475, 96-100. | 2.6 | 7 | | 406 | A joint computational and experimental study of a novel dioxomolybdenum(VI) complex bearing chiral N,N-dimethyllactamide ligand. Inorganica Chimica Acta, 2011, 375, 41-46. | 2.4 | 7 | | 407 | Can Supported Reduced Vanadium Oxides form H ₂ from CH ₃ OH? A Computational Gas-Phase Mechanistic Study. Journal of Physical Chemistry A, 2018, 122, 1104-1113. | 2.5 | 7 | | 408 | A diagnosis approach for semiconductor properties evaluation from ab initio calculations: Ag-based materials investigation. Journal of Solid State Chemistry, 2022, 305, 122670. | 2.9 | 7 | | 409 | Interface matters: Design of an efficient α-Ag2WO4/Ag3PO4 photocatalyst. Materials Chemistry and Physics, 2022, 280, 125710. | 4.0 | 7 | | 410 | Inactivation of SARS-CoV-2 by a chitosan \hat{l} ±-Ag2WO4 composite generated by femtosecond laser irradiation. Scientific Reports, 2022, 12, 8118. | 3.3 | 7 | | 411 | Catalytic role of copper(I) ion on the propargylic transposition. A theoretical study. The Journal of Physical Chemistry, 1985, 89, 4769-4773. | 2.9 | 6 | | 412 | Electronic aspects of the hydride transfer mechanism. III. Ab-initio analytical gradient studies of the cyclopropenyl-cation/LiH with 4-31G and 3-21+G basis sets Computational and Theoretical Chemistry, 1988, 166, 421-430.
| 1.5 | 6 | | 413 | A comparative QCISD(T), DFT and MCSCF study of the unimolecular, decomposition of the N-chloro-α-glycine anion in gas phase. Theoretica Chimica Acta, 1996, 94, 247-256. | 0.8 | 6 | | 414 | A quantum electronic theory of chemical processes? The inverted energy profile case: CH3+ + H2 reaction. International Journal of Quantum Chemistry, 1997, 63, 373-391. | 2.0 | 6 | | # | Article | IF | Citations | |-----|--|------|-----------| | 415 | PM3 study of the domino reaction of nitroalkenes with silyl enol ethers. Journal of Physical Organic Chemistry, 1999, 12, 24-30. | 1.9 | 6 | | 416 | A joint theoretical and kinetic investigation on the fragmentation of (N-halo)-2-amino cycloalkanecarboxylates. Chemical Physics, 2002, 280, 1-14. | 1.9 | 6 | | 417 | A theoretical study on the mechanism of the base-promoted decomposition of N-chloro,N-methylethanolamine. Organic and Biomolecular Chemistry, 2009, 7, 1807. | 2.8 | 6 | | 418 | A DFT Study of the Reactivity Indexes of Ionic $[4 + 2 +]$ Diels-Alder Cycloaddition to Nitrilium and Immonium Ions. Letters in Organic Chemistry, 2011, 8, 104-107. | 0.5 | 6 | | 419 | Structural and optical properties of ZnS/MgNb2O6 heterostructures. Superlattices and Microstructures, 2015, 79, 180-192. | 3.1 | 6 | | 420 | On the catalytic transfer hydrogenation of nitroarenes by a cubane-type Mo ₃ 5 ₄ cluster hydride: disentangling the nature of the reaction mechanism. Physical Chemistry Chemical Physics, 2019, 21, 17221-17231. | 2.8 | 6 | | 421 | A scalable electron beam irradiation platform applied for allotropic carbon transformation. Carbon, 2021, 174, 567-580. | 10.3 | 6 | | 422 | A theoretical and experimental investigation of hetero- vs. homo-connectivity in barium silicates. American Mineralogist, 2022, 107, 716-728. | 1.9 | 6 | | 423 | Photoluminescence emissions of Ca1â^'WO4:xEu3+: Bridging between experiment and DFT calculations. Journal of Rare Earths, 2022, 40, 1527-1534. | 4.8 | 6 | | 424 | A bonding evolution theory study of the reaction between methylidyne radical,
<scp>CH</scp> (<scp>X²î</scp>), and cyclopentadiene,
<scp>C₅H₆</scp> . International Journal of Quantum Chemistry, 2022, 122, . | 2.0 | 6 | | 425 | An ab initio study of the unimolecular decomposition mechanism of formamidine. 4-31G
Characterization of potential energy hypersurface. International Journal of Quantum Chemistry, 1991,
40, 127-137. | 2.0 | 5 | | 426 | Quantum Chemical Studies of Pyrroloquinoline Quinone: PM3 Pathways for Methanol Oxidation. Bioorganic Chemistry, 1994, 22, 58-71. | 4.1 | 5 | | 427 | Periodic Hartree-Fock calculation of the A1g (Tz) and Eg (Tx, Ty) phonon modes in ice VIII. Journal of Molecular Structure, 1997, 436-437, 443-449. | 3.6 | 5 | | 428 | A PM3 semiempirical study of the molecular mechanism for the Favorskii rearrangement of the α-chlorocyclobutanone. Computational and Theoretical Chemistry, 1998, 426, 299-306. | 1.5 | 5 | | 429 | A PM3 study of the molecular mechanism for the cycloaddition between cyclopentadiene and protonated pyridine-imine derivatives. Computational and Theoretical Chemistry, 2001, 544, 79-90. | 1.5 | 5 | | 430 | DFT study on the water-assisted mechanism for the reaction between VO+ and NH3 to yield VNH+ and H2O. Chemical Physics Letters, 2006, 427, 265-270. | 2.6 | 5 | | 431 | A numerical simulation of woven/anionic polyamide 6 composite part manufacturing using structural reactive injection moulding process. Journal of Thermoplastic Composite Materials, 2016, 29, 219-233. | 4.2 | 5 | | 432 | Towards a white-emitting phosphor Ca10V6O25 based material. Journal of Luminescence, 2020, 220, 116990. | 3.1 | 5 | | # | Article | IF | CITATIONS | |-----|--|--------------|-----------| | 433 | A description of the formation and growth processes of CaTiO3 mesocrystals: a joint experimental and theoretical approach. Molecular Systems Design and Engineering, 2020, 5, 1255-1266. | 3.4 | 5 | | 434 | Behavior of Bi2S3 under ultrasound irradiation for Rhodamine B dye degradation. Chemical Physics Letters, 2021, 785, 139123. | 2.6 | 5 | | 435 | Towards a relationship between photoluminescence emissions and photocatalytic activity of Ag ₂ SeO ₄ : combining experimental data and theoretical insights. Dalton Transactions, 2022, 51, 11346-11362. | 3.3 | 5 | | 436 | Linear bending in propynyl cation, allene, and propyne systems: do they have flexible structures? an ab initio 4 – 31 + G molecular orbital study. Journal of the Chemical Society Perkin Transactions II, 1985, , 363-366. | 0.9 | 4 | | 437 | Theoretical studies of α-acetylenic alcohols rearrangement mechanism: Ab initio calculations of the unimolecular rate limiting step. Computational and Theoretical Chemistry, 1986, 138, 171-177. | 1.5 | 4 | | 438 | V4+ doping into SiO2, ZrO2 and ZrSiO4 structures. Anab initio perturbed ion study. International Journal of Quantum Chemistry, 1993, 48, 175-186. | 2.0 | 4 | | 439 | An Ab initio perturbed ion study of pyrope garnet structure. Journal of Physics and Chemistry of Solids, 1995, 56, 901-906. | 4.0 | 4 | | 440 | A semiempirical study on the ring-opening process for the cyclopropanone, 2,2-dimethylcyclopropanone,trans-2,3-di-tert-butylcyclopropanone, and spiro(bicyclo[2.2.1]heptane-2.1?-cyclopropan)-2?-one systems in solution. International Journal of Quantum Chemistry, 1997, 65, 729-738. | 2.0 | 4 | | 441 | Designing a Transition State Analogue for the Disfavored Intramolecular Michael Addition of 2-(2-Hydroxyethyl)acrylate Esters. Journal of Organic Chemistry, 1999, 64, 9164-9169. | 3 . 2 | 4 | | 442 | Alternative pathways for the C2–C3 bond cleavage and C2 configuration inversion processes for the Rubisco-catalyzed carboxylation sequence. Chemical Physics Letters, 2000, 318, 361-369. | 2.6 | 4 | | 443 | A Combined Experimental and Theoretical Study of the Homogeneous, Unimolecular Decomposition Kinetics of 3-Chloropivalic Acid in the Gas Phase. Journal of Physical Chemistry A, 2001, 105, 1869-1875. | 2.5 | 4 | | 444 | Understanding the mechanism of base-assisted decomposition of (N-halo),N-alkylalcoholamines. Organic and Biomolecular Chemistry, 2003, 1, 4323-4328. | 2.8 | 4 | | 445 | Density functional study of the Hoffmann elimination of (N-Cl),N-methylethanolamine in gas phase and in aqueous solution. Chemical Physics Letters, 2006, 429, 425-429. | 2.6 | 4 | | 446 | Proton transport catalysis in intramolecular rearrangements: A density functional theory study. Chemical Physics Letters, 2008, 464, 271-275. | 2.6 | 4 | | 447 | Photoluminescence Properties of Nanocrystals. Journal of Nanomaterials, 2012, 2012, 1-2. | 2.7 | 4 | | 448 | Evidence for the formation of metallic In after laser irradiation of InP. Journal of Applied Physics, 2019, 126, . | 2.5 | 4 | | 449 | Deciphering the Molecular Mechanism of Intramolecular Reactions from the Perspective of Bonding Evolution Theory. Physchem, 2022, 2, 207-223. | 1.1 | 4 | | 450 | Simulation of ionic crystals: calculation of Madelung potentials for stabilized zirconia. Journal of Materials Science, 1995, 30, 4852-4856. | 3.7 | 3 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 451 | MgAl2O4 spinel crystal structure. An ab initio perturbed ion study. International Journal of Quantum Chemistry, 1995, 56, 685-694. | 2.0 | 3 | | 452 | An ab Initio Perturbed Ion Study of the BaLiF3 and BaLiH3 Inverted Perovskite Structures. The Journal of Physical Chemistry, 1995, 99, 8082-8090. | 2.9 | 3 | | 453 | Theoretical characterization of transition structure for the enzyme-catalyzed reaction at the active center of lactate dehydrogenase. Geometry and transition vector dependence upon computing method and model system. Journal of Physical Organic Chemistry, 1996, 9, 498-506. | 1.9 | 3 | | 454 | Understanding the mechanism of the addition of organomagnesium reagents to 2-hydroxypropanal: An ab initio molecular orbital analysis. International Journal of Quantum Chemistry, 1997, 65, 719-728. | 2.0 | 3 | | 455 | A theoretical study of the addition of CH3MgCl to chiral \hat{l} ±-alkoxy carbonyl compounds. Computational and Theoretical Chemistry, 1998, 426, 263-275. | 1.5 | 3 | | 456 | Theoretical investigation of the abnormal Reimer-Tiemann reaction. Journal of Physical Organic Chemistry, $1998,11,670-677.$ | 1.9 | 3 | | 457 | Author Index to Volumes 271–280. Chemical Physics, 2002, 280, 1-26. | 1.9 | 3 | | 458 | Towards a Rational Design of Antibody Catalysts through Computational Chemistry. Angewandte Chemie, 2005, 117, 926-931. | 2.0 | 3 | | 459 | Stereoselectivity Behavior of the AZ28 Antibody Catalyzed Oxy-Cope Rearrangementâ€. Journal of Physical Chemistry A, 2006, 110, 726-730. | 2.5 | 3 | | 460 | Combined ¹³ C NMR and DFT/GIAO studies of the polyketides Aurasperone A and Fonsecinone A. International Journal of Quantum Chemistry, 2008, 108, 2408-2416. | 2.0 | 3 | | 461 | New insight into the electronic structure of iron(IV)â€oxo porphyrin compound I. A quantum chemical topological analysis. Journal of Computational Chemistry, 2013, 34, 780-789. | 3.3 | 3 | | 462 | Towards an Understanding on the Role of Precursor in the Synthesis of ZnS Nanostructures. Current Physical Chemistry, 2013, 3, 378-385. |
0.2 | 3 | | 463 | α Ag2WO4 under microwave, electron beam and femtosecond laser irradiations: Unveiling the relationship between morphology and photoluminescence emissions. Journal of Alloys and Compounds, 2022, 903, 163840. | 5.5 | 3 | | 464 | Formation of Metallic Ag on AgBr by Femtosecond Laser Irradiation. Physchem, 2022, 2, 179-190. | 1.1 | 3 | | 465 | Theoretical study of lattice stability and selective doping effects of V4+ and Tb4+ in the ZrGeO4 lattice. Chemical Physics Letters, 1995, 236, 521-531. | 2.6 | 2 | | 466 | lonic structures as intercalation compound host lattices. An ab initio perturbed ion study on lattice stretching. Computational and Theoretical Chemistry, 1995, 330, 313-317. | 1.5 | 2 | | 467 | Ab initio perturbed ion calculations on Ni2+·KZnF3 and Ni2+ ·KMgF3. A structural study. Computational and Theoretical Chemistry, 1995, 330, 319-323. | 1.5 | 2 | | 468 | Hydrogen bonding and dissociation effects on the gas phase proton transfer reactions of ozone. Theoretical Chemistry Accounts, 1998, 99, 60-63. | 1.4 | 2 | | # | Article | IF | CITATIONS | |-----|--|-----|-----------| | 469 | Theoretical study of the molecular mechanism of the domino pathways for squarate ester sequential reactions. Journal of Physical Organic Chemistry, 1999, 12, 61-68. | 1.9 | 2 | | 470 | Stability of MgAl 2 O 4 Under High-Pressure Conditions. High Pressure Research, 2002, 22, 447-450. | 1.2 | 2 | | 471 | Bridging Structure and Real-Space Topology: Understanding Complex Molecules and Solid-State Materials., 2017,, 427-454. | | 2 | | 472 | Binding free energy calculations to rationalize the interactions of huprines with acetylcholinesterase. Journal of Computer-Aided Molecular Design, 2018, 32, 607-622. | 2.9 | 2 | | 473 | Direct preparation of standard functional interfaces in oxide heterostructures for 2DEG analysis through beam-induced platinum contacts. Applied Physics Letters, 2018, 113, . | 3.3 | 2 | | 474 | Toward Expanding the Optical Response of Ag2CrO4 and Bi2O3 by Their Laser-Mediated Heterojunction. Journal of Physical Chemistry C, 2020, 124, 26404-26414. | 3.1 | 2 | | 475 | Unveiling the Ag-Bi miscibility at the atomic level: A theoretical insight. Computational Materials Science, 2021, 197, 110612. | 3.0 | 2 | | 476 | Integrated experimental and theoretical study on the phase transition and photoluminescent properties of ZrO2:xTb3+ ($x=1$, 2, 4 and 8 mol %). Materials Research Bulletin, 2022, 145, 111532. | 5.2 | 2 | | 477 | Quantum Chemical Topology Approach for Dissecting Chemical Structure and Reactivity. Challenges and Advances in Computational Chemistry and Physics, 2016, , 257-294. | 0.6 | 2 | | 478 | MO studies of the nature of the bifurcated hydrogen bond. Rotational barriers in cyclohexanol and 1,3-dioxan-5-ol. Chemical Physics Letters, 1984, 109, 468-470. | 2.6 | 1 | | 479 | Theoretical studies of substituent effects on stationary structures of amidine decomposition. Journal of the Chemical Society Perkin Transactions II, 1991, , 539-542. | 0.9 | 1 | | 480 | Transition structure for hydride transfer from cyclopropene to azirinium cation. Computational and Theoretical Chemistry, 1996, 363, 257-261. | 1.5 | 1 | | 481 | Metallic behavior in STO/LAO heterostructures with non-uniformly atomic interfaces. Materials Today Communications, 2020, 24, 101339. | 1.9 | 1 | | 482 | Quantum Theory of Solvent Effects and Chemical Reactions. , 2002, , 283-361. | | 1 | | 483 | GENERALIZED DIABATIC STUDY OF ETHYLENE "ISOMERISM". , 2006, , 177-196. | | 1 | | 484 | Hybrid QM/MM Studies on Chemical Reactivity. ChemInform, 2003, 34, no. | 0.0 | 0 | | 485 | Theoretical Insights in Enzyme Catalysis. ChemInform, 2004, 35, no. | 0.0 | 0 | | 486 | A Theoretical Study on the Gas Phase Reactions of the Anions NbO3-, NbO5-, and NbO2(OH)2- with H2O and O2. ChemInform, 2005, 36, no. | 0.0 | 0 | ## J Andrés | # | ARTICLE | IF | CITATIONS | |-----|--|-----|-----------| | 487 | DFT Study of Oxygen Adsorption on Modified Nanostructured Gold Pyramids ChemInform, 2005, 36, no. | 0.0 | 0 | | 488 | Topological Analysis of the Bonds in Incomplete Cuboidal [Mo ₃ S ₄] Clusters ChemInform, 2002, 33, 2-2. | 0.0 | 0 | | 489 | A Thermodynamic Approach to Predict Dopant Atoms Segregation on Nanocrystals. Microscopy and Microanalysis, 2011, 17, 1458-1459. | 0.4 | 0 | | 490 | Chemical Bonding under Pressure. , 2015, , 131-157. | | 0 |