Vaiyapuri Soundharrajan

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/7291700/vaiyapuri-soundharrajan-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

36 3,537 23 37 h-index g-index citations papers 4,468 11.2 37 5.33 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
36	Electrochemically Induced Structural Transformation in a EMnO2Cathode of a High Capacity Zinc-Ion Battery System. <i>Chemistry of Materials</i> , 2015 , 27, 3609-3620	9.6	549
35	Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode. <i>Chemistry of Materials</i> , 2017 , 29, 1684-1694	9.6	342
34	NaVOBHO Barnesite Nanorod: An Open Door to Display a Stable and High Energy for Aqueous Rechargeable Zn-Ion Batteries as Cathodes. <i>Nano Letters</i> , 2018 , 18, 2402-2410	11.5	341
33	A layered EMnO 2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. <i>Electrochemistry Communications</i> , 2015 , 60, 121-125	5.1	307
32	Enhanced reversible divalent zinc storage in a structurally stable EMnO 2 nanorod electrode. Journal of Power Sources, 2015 , 288, 320-327	8.9	240
31	Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn2V2O7 nanowire cathode through intercalation regulation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3850-3856	13	212
30	Facile synthesis and the exploration of the zinc storage mechanism of EMnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 23299-23309	13	194
29	High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 20857		162
28	K2V6O16I2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 15530-15539	13	132
27	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. <i>ACS Energy Letters</i> , 2020 , 5, 2376-2400	20.1	128
26	Co3V2O8 Sponge Network Morphology Derived from Metal-Organic Framework as an Excellent Lithium Storage Anode Material. <i>ACS Applied Materials & Description</i> (1988) 1884-1984 (1988) 1984-1985 (1988) 1985-1986 (1	9.5	114
25	Aqueous Magnesium Zinc Hybrid Battery: An Advanced High-Voltage and High-Energy MgMn2O4 Cathode. <i>ACS Energy Letters</i> , 2018 , 3, 1998-2004	20.1	108
24	Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. <i>Applied Surface Science</i> , 2017 , 404, 435-442	6.7	91
23	The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. <i>Energy Storage Materials</i> , 2020 , 28, 407-417	19.4	84
22	Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. <i>Journal of Energy Chemistry</i> , 2017 , 26, 815-819	12	75
21	K+ intercalated V2O5 nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20335-20347	13	67
20	Metal b rganic framework-combustion: a new, cost-effective and one-pot technique to produce a porous Co3V2O8 microsphere anode for high energy lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 14605-14613	13	56

19	Zn3V2O8 porous morphology derived through a facile and green approach as an excellent anode for high-energy lithium ion batteries. <i>Chemical Engineering Journal</i> , 2017 , 328, 454-463	14.7	44
18	Investigation of Li-ion storage properties of earth abundant EMn2V2O7 prepared using facile green strategy. <i>Journal of Power Sources</i> , 2017 , 350, 80-86	8.9	36
17	In Situ Oriented Mn Deficient ZnMnO@C Nanoarchitecture for Durable Rechargeable Aqueous Zinc-Ion Batteries. <i>Advanced Science</i> , 2021 , 8, 2002636	13.6	32
16	An Enhanced High-Rate NaV(PO)-NiP Nanocomposite Cathode with Stable Lifetime for Sodium-Ion Batteries. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	31
15	Facile green synthesis of a CoVO nanoparticle electrode for high energy lithium-ion battery applications. <i>Journal of Colloid and Interface Science</i> , 2017 , 501, 133-141	9.3	28
14	Bitter gourd-shaped Ni3V2O8 anode developed by a one-pot metal-organic framework-combustion technique for advanced Li-ion batteries. <i>Ceramics International</i> , 2017 , 43, 13224-13232	5.1	28
13	Ni3V2O8 nanoparticles as an excellent anode material for high-energy lithium-ion batteries. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 810, 34-40	4.1	22
12	A sponge network-shaped Mn3O4/C anode derived from a simple, one-pot metal organic framework-combustion technique for improved lithium ion storage. <i>Inorganic Chemistry Frontiers</i> , 2016 , 3, 1609-1615	6.8	22
11	Multidimensional Na4VMn0.9Cu0.1(PO4)3/C cotton-candy cathode materials for high energy Na-ion batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 12055-12068	13	19
10	Metal organic framework-combustion: A one-pot strategy to NiO nanoparticles with excellent anode properties for lithium ion batteries. <i>Journal of Energy Chemistry</i> , 2018 , 27, 300-305	12	17
9	Hyper oxidized V6O13+x[hH2O layered cathode for aqueous rechargeable Zn battery: Effect on dual carriers transportation and parasitic reactions. <i>Energy Storage Materials</i> , 2021 , 35, 47-61	19.4	12
8	C-Na3V1.96Fe0.04(PO4)3/Fe2P nanoclusters with stable charge-transfer interface for high-power sodium ion batteries. <i>Chemical Engineering Journal</i> , 2021 , 404, 126974	14.7	10
7	Na2.3Cu1.1Mn2O7Ehanoflakes as enhanced cathode materials for high-energy sodium-ion batteries achieved by a rapid pyrosynthesis approach. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 770-778	3 ¹³	9
6	An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. <i>CheM</i> , 2022 , 8, 924-946	16.2	7
5	The advent of manganese-substituted sodium vanadium phosphate-based cathodes for sodium-ion batteries and their current progress: a focused review. <i>Journal of Materials Chemistry A</i> , 2022 , 10, 1022-	1046	5
4	Hybrid porous zirconia scaffolds fabricated using additive manufacturing for bone tissue engineering applications. <i>Materials Science and Engineering C</i> , 2021 , 123, 111950	8.3	5
3	Three-Dimensional Zirconia-Based Scaffolds for Load-Bearing Bone-Regeneration Applications: Prospects and Challenges. <i>Materials</i> , 2021 , 14,	3.5	5
2	Highly conductive ZrO2N spheres as bifunctional framework stabilizers and gas evolution relievers in nickel-rich layered cathodes for lithium-ion batteries. <i>Composites Part B: Engineering</i> , 2022 , 238, 1099	<u>1</u> 10	2

Recent Developments of Zinc-Ion Batteries **2021**, 27-57

О