
## Darius Ceburnis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7291430/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Biogenically driven organic contribution to marine aerosol. Nature, 2004, 431, 676-680.                                                                                                                       | 27.8 | 890       |
| 2  | Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmospheric Measurement Techniques, 2010, 3, 457-474.                                        | 3.1  | 409       |
| 3  | Primary submicron marine aerosol dominated by insoluble organic colloids and aggregates.<br>Geophysical Research Letters, 2008, 35, .                                                                         | 4.0  | 380       |
| 4  | Important Source of Marine Secondary Organic Aerosol from Biogenic Amines. Environmental Science<br>& Technology, 2008, 42, 9116-9121.                                                                        | 10.0 | 349       |
| 5  | Advances in characterization of size-resolved organic matter in marine aerosol over the North<br>Atlantic. Journal of Geophysical Research, 2004, 109, .                                                      | 3.3  | 322       |
| 6  | Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 2014, 14, 6159-6176.                   | 4.9  | 308       |
| 7  | EUCAARI ion spectrometer measurements at 12 European sites – analysis of new particle formation events. Atmospheric Chemistry and Physics, 2010, 10, 7907-7927.                                               | 4.9  | 248       |
| 8  | Molecular-scale evidence of aerosol particle formation via sequential addition of HIO3. Nature, 2016, 537, 532-534.                                                                                           | 27.8 | 237       |
| 9  | Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature, 2017, 546, 637-641.                                                                                       | 27.8 | 232       |
| 10 | Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment.<br>Atmospheric Environment, 2010, 44, 670-677.                                                                  | 4.1  | 196       |
| 11 | Seasonal characteristics of the physicochemical properties of North Atlantic marine atmospheric aerosols. Journal of Geophysical Research, 2007, 112, .                                                       | 3.3  | 189       |
| 12 | Elemental and organic carbon in PM <sub>10</sub> : a one year measurement<br>campaign within the European Monitoring and Evaluation Programme EMEP. Atmospheric Chemistry<br>and Physics, 2007, 7, 5711-5725. | 4.9  | 177       |
| 13 | Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies. Advances in Meteorology, 2010, 2010, 1-10.                              | 1.6  | 175       |
| 14 | A combined organicâ€inorganic seaâ€spray source function. Geophysical Research Letters, 2008, 35, .                                                                                                           | 4.0  | 173       |
| 15 | Wind speed dependent size-resolved parameterization for the organic mass fraction of sea spray aerosol. Atmospheric Chemistry and Physics, 2011, 11, 8777-8790.                                               | 4.9  | 150       |
| 16 | Contribution of feldspar and marine organic aerosols to global ice nucleating particle concentrations. Atmospheric Chemistry and Physics, 2017, 17, 3637-3658.                                                | 4.9  | 144       |
| 17 | Conifer needles as biomonitors of atmospheric heavy metal deposition: comparison with mosses and precipitation, role of the canopy. Atmospheric Environment, 2000, 34, 4265-4271.                             | 4.1  | 134       |
| 18 | Primary marine organic aerosol: A dichotomy of low hygroscopicity and high CCN activity.<br>Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                  | 4.0  | 118       |

| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Study of water-soluble atmospheric humic matter in urban and marine environments. Atmospheric Research, 2008, 87, 1-12.                                                                                         | 4.1 | 115       |
| 20 | Quantification of the carbonaceous matter origin in submicron marine aerosol by<br><sup>13</sup> C and <sup>14</sup> C isotope<br>analysis. Atmospheric Chemistry and Physics, 2011, 11, 8593-8606.             | 4.9 | 114       |
| 21 | Detecting high contributions of primary organic matter to marine aerosol: A case study. Geophysical<br>Research Letters, 2011, 38, n/a-n/a.                                                                     | 4.0 | 113       |
| 22 | A sea spray aerosol flux parameterization encapsulating wave state. Atmospheric Chemistry and Physics, 2014, 14, 1837-1852.                                                                                     | 4.9 | 113       |
| 23 | On the effect of wind speed on submicron sea salt mass concentrations and source fluxes. Journal of<br>Geophysical Research, 2012, 117, .                                                                       | 3.3 | 107       |
| 24 | Marine and Terrestrial Organic Iceâ€Nucleating Particles in Pristine Marine to Continentally Influenced<br>Northeast Atlantic Air Masses. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6196-6212. | 3.3 | 98        |
| 25 | Marine aerosol chemistry gradients: Elucidating primary and secondary processes and fluxes.<br>Geophysical Research Letters, 2008, 35, .                                                                        | 4.0 | 93        |
| 26 | Significant enhancement of aerosol optical depth in marine air under high wind conditions.<br>Geophysical Research Letters, 2008, 35, .                                                                         | 4.0 | 93        |
| 27 | Global Modeling of the Oceanic Source of Organic Aerosols. Advances in Meteorology, 2010, 2010, 1-16.                                                                                                           | 1.6 | 93        |
| 28 | Is chlorophyllâ€ <i>a</i> the best surrogate for organic matter enrichment in submicron primary marine<br>aerosol?. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4964-4973.                       | 3.3 | 89        |
| 29 | Evidence of a natural marine source of oxalic acid and a possible link to glyoxal. Journal of<br>Geophysical Research, 2011, 116, .                                                                             | 3.3 | 86        |
| 30 | Primary and secondary marine organic aerosols over the North Atlantic Ocean during the MAP experiment. Journal of Geophysical Research, 2011, 116, n/a-n/a.                                                     | 3.3 | 85        |
| 31 | Variation of the mixing state of Saharan dust particles with atmospheric transport. Atmospheric Environment, 2010, 44, 3135-3146.                                                                               | 4.1 | 82        |
| 32 | Characteristic features of air ions at Mace Head on the west coast of Ireland. Atmospheric Research, 2008, 90, 278-286.                                                                                         | 4.1 | 77        |
| 33 | Characterization of urban aerosol in Cork city (Ireland) using aerosol mass spectrometry.<br>Atmospheric Chemistry and Physics, 2013, 13, 4997-5015.                                                            | 4.9 | 75        |
| 34 | Connecting marine productivity to sea-spray via nanoscale biological processes: Phytoplankton Dance<br>or Death Disco?. Scientific Reports, 2015, 5, 14883.                                                     | 3.3 | 75        |
| 35 | Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach. Scientific Reports, 2017, 7, 11475.                                                      | 3.3 | 75        |
| 36 | Primary emissions versus secondary formation of fine particulate matter in the most polluted city<br>(Shijiazhuang) in North China. Atmospheric Chemistry and Physics, 2019, 19, 2283-2298.                     | 4.9 | 74        |

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Investigation of absolute metal uptake efficiency from precipitation in moss. Science of the Total Environment, 1999, 226, 247-253.                                                                                          | 8.0  | 70        |
| 38 | Submicron NE Atlantic marine aerosol chemical composition and abundance: Seasonal trends and air mass categorization. Journal of Geophysical Research D: Atmospheres, 2014, 119, 11,850-11,863.                              | 3.3  | 65        |
| 39 | Major component composition of urban PM10 and PM2.5 in Ireland. Atmospheric Research, 2005, 78, 149-165.                                                                                                                     | 4.1  | 64        |
| 40 | Antarctic sea ice region as a source of biogenic organic nitrogen in aerosols. Scientific Reports, 2017,<br>7, 6047.                                                                                                         | 3.3  | 63        |
| 41 | Summertime Primary and Secondary Contributions to Southern Ocean Cloud Condensation Nuclei.<br>Scientific Reports, 2018, 8, 13844.                                                                                           | 3.3  | 63        |
| 42 | Aerosol properties associated with air masses arriving into the North East Atlantic during the 2008<br>Mace Head EUCAARI intensive observing period: an overview. Atmospheric Chemistry and Physics, 2010,<br>10, 8413-8435. | 4.9  | 61        |
| 43 | Extreme air pollution from residential solid fuel burning. Nature Sustainability, 2018, 1, 512-517.                                                                                                                          | 23.7 | 59        |
| 44 | Lessons learnt from the first EMEP intensive measurement periods. Atmospheric Chemistry and Physics, 2012, 12, 8073-8094.                                                                                                    | 4.9  | 58        |
| 45 | Summertime and wintertime atmospheric processes of secondary aerosol in Beijing. Atmospheric<br>Chemistry and Physics, 2020, 20, 3793-3807.                                                                                  | 4.9  | 55        |
| 46 | Geochemistry of PM <sub>10</sub> over Europe during the EMEP intensive<br>measurement periods in summerÂ2012 and winterÂ2013. Atmospheric Chemistry and Physics, 2016, 16,<br>6107-6129.                                     | 4.9  | 54        |
| 47 | Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated<br>Forecast System: 3. Evaluation by means of case studies. Journal of Geophysical Research, 2011, 116, .                 | 3.3  | 53        |
| 48 | Light-absorbing carbon in Europe – measurement and modelling, with a focus on residential wood combustion emissions. Atmospheric Chemistry and Physics, 2013, 13, 8719-8738.                                                 | 4.9  | 51        |
| 49 | A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe. Atmospheric Environment, 2016, 144, 133-145.                                           | 4.1  | 50        |
| 50 | On the representativeness of coastal aerosol studies to open ocean studies: Mace Head – a case study.<br>Atmospheric Chemistry and Physics, 2009, 9, 9635-9646.                                                              | 4.9  | 44        |
| 51 | Nitrogenated and aliphatic organic vapors as possible drivers for marine secondary organic aerosol growth. Journal of Geophysical Research, 2012, 117, .                                                                     | 3.3  | 44        |
| 52 | Nanoparticles in boreal forest and coastal environment: a comparison of observations and implications of the nucleation mechanism. Atmospheric Chemistry and Physics, 2010, 10, 7009-7016.                                   | 4.9  | 42        |
| 53 | Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at<br>Mace Head?. Atmospheric Chemistry and Physics, 2014, 14, 10687-10704.                                                    | 4.9  | 42        |
| 54 | Light backscattering and scattering by nonspherical sea-salt aerosols. Journal of Quantitative<br>Spectroscopy and Radiative Transfer, 2003, 79-80, 577-597.                                                                 | 2.3  | 41        |

| #  | Article                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | European aerosol phenomenology â^' 8: Harmonised source apportionment of organic aerosol using 22<br>Year-long ACSM/AMS datasets. Environment International, 2022, 166, 107325.                                | 10.0 | 41        |
| 56 | Estimation of atmospheric trace metal emissions in Vilnius City, Lithuania, using vertical<br>concentration gradient and road tunnel measurement data. Atmospheric Environment, 2002, 36,<br>6001-6014.        | 4.1  | 37        |
| 57 | Light scattering properties of sea-salt aerosol particles inferred from modeling studies and<br>ground-based measurements. Journal of Quantitative Spectroscopy and Radiative Transfer, 2006, 101,<br>498-511. | 2.3  | 37        |
| 58 | Volcanic sulphate and arctic dust plumes over the North Atlantic Ocean. Atmospheric Environment, 2009, 43, 4968-4974.                                                                                          | 4.1  | 37        |
| 59 | Stable isotopes measurements reveal dual carbon pools contributing to organic matter enrichment in marine aerosol. Scientific Reports, 2016, 6, 36675.                                                         | 3.3  | 37        |
| 60 | Growth rates during coastal and marine new particle formation in western Ireland. Journal of<br>Geophysical Research, 2010, 115, .                                                                             | 3.3  | 36        |
| 61 | A statistical analysis of North East Atlantic (submicron) aerosol size distributions. Atmospheric<br>Chemistry and Physics, 2011, 11, 12567-12578.                                                             | 4.9  | 35        |
| 62 | Model evaluation of marine primary organic aerosol emission schemes. Atmospheric Chemistry and Physics, 2012, 12, 8553-8566.                                                                                   | 4.9  | 34        |
| 63 | Stable carbon fractionation in size-segregated aerosol particles produced by controlled biomass burning. Journal of Aerosol Science, 2015, 79, 86-96.                                                          | 3.8  | 34        |
| 64 | Simultaneous Detection of Alkylamines in the Surface Ocean and Atmosphere of the Antarctic Sympagic Environment. ACS Earth and Space Chemistry, 2019, 3, 854-862.                                              | 2.7  | 34        |
| 65 | Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing. Atmospheric Chemistry and Physics, 2020, 20, 9101-9114.                       | 4.9  | 34        |
| 66 | In-stack emissions of heavy metals estimated by moss biomonitoring method and snow-pack analysis.<br>Atmospheric Environment, 2002, 36, 1465-1474.                                                             | 4.1  | 33        |
| 67 | Estimation of metal uptake efficiencies from precipitation in mosses in Lithuania. Chemosphere, 1999, 38, 445-455.                                                                                             | 8.2  | 32        |
| 68 | Sea-spray regulates sulfate cloud droplet activation over oceans. Npj Climate and Atmospheric Science, 2020, 3, .                                                                                              | 6.8  | 32        |
| 69 | Characterization of Primary Organic Aerosol from Domestic Wood, Peat, and Coal Burning in Ireland.<br>Environmental Science & Technology, 2017, 51, 10624-10632.                                               | 10.0 | 31        |
| 70 | Elucidating carbonaceous aerosol sources by the stable carbon δ13CTC ratio in size-segregated particles. Atmospheric Research, 2015, 158-159, 1-12.                                                            | 4.1  | 30        |
| 71 | extended study of atmospheric heavy metal deposition in lithuania based on moss analysis.<br>Environmental Monitoring and Assessment, 1997, 47, 135-152.                                                       | 2.7  | 29        |
| 72 | Global relevance of marine organic aerosol as ice nucleating particles. Atmospheric Chemistry and Physics, 2018, 18, 11423-11445.                                                                              | 4.9  | 29        |

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain.<br>Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.                                     | 4.9  | 27        |
| 74 | Sea spray as an obscured source for marine cloud nuclei. Nature Geoscience, 2022, 15, 282-286.                                                                                                 | 12.9 | 27        |
| 75 | Atmospheric Pb and Cd input into the Baltic Sea: a new estimate based on measurements. Marine Chemistry, 2000, 71, 297-307.                                                                    | 2.3  | 26        |
| 76 | Chemical nature and sources of fine particles in urban Beijing: Seasonality and formation mechanisms.<br>Environment International, 2020, 140, 105732.                                         | 10.0 | 26        |
| 77 | Effects of NH3 and alkaline metals on the formation of particulate sulfate and nitrate in wintertime<br>Beijing. Science of the Total Environment, 2020, 717, 137190.                          | 8.0  | 26        |
| 78 | Direct field evidence of autocatalytic iodine release from atmospheric aerosol. Proceedings of the<br>National Academy of Sciences of the United States of America, 2021, 118, .               | 7.1  | 25        |
| 79 | The Eyjafjallajökull ash plume – Part I: Physical, chemical and optical characteristics. Atmospheric<br>Environment, 2012, 48, 129-142.                                                        | 4.1  | 24        |
| 80 | Sources and atmospheric processing of size segregated aerosol particles revealed by stable carbon isotope ratios and chemical speciation. Environmental Pollution, 2018, 240, 286-296.         | 7.5  | 24        |
| 81 | Top-down and bottom-up aerosol–cloud closure: towards understanding sources of uncertainty in deriving cloud shortwave radiative flux. Atmospheric Chemistry and Physics, 2017, 17, 9797-9814. | 4.9  | 21        |
| 82 | Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregions. Atmospheric Chemistry and Physics, 2020, 20, 4193-4207.            | 4.9  | 21        |
| 83 | Bistable effect of organic enrichment on sea spray radiative properties. Geophysical Research Letters, 2013, 40, 6395-6398.                                                                    | 4.0  | 20        |
| 84 | The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe. Atmospheric Chemistry and Physics, 2019, 19, 4211-4233.          | 4.9  | 20        |
| 85 | Concentrations and fluxes of aerosol particles during the LAPBIAT measurement campaign at Väiö<br>field station. Atmospheric Chemistry and Physics, 2007, 7, 3683-3700.                        | 4.9  | 19        |
| 86 | Aerosol hygroscopicity and its link to chemical composition in the coastal atmosphere of Mace Head: marine and continental air masses. Atmospheric Chemistry and Physics, 2020, 20, 3777-3791. | 4.9  | 19        |
| 87 | The seaweeds <i>Fucus vesiculosus</i> and <i>Ascophyllum<br/>nodosum</i> are significant contributors to coastal iodine emissions. Atmospheric<br>Chemistry and Physics, 2013, 13, 5255-5264.  | 4.9  | 18        |
| 88 | Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.<br>Science of the Total Environment, 2014, 493, 197-208.                                       | 8.0  | 18        |
| 89 | The Eyjafjallajökull ash plume – Part 2: Simulating ash cloud dispersion with REMOTE. Atmospheric<br>Environment, 2012, 48, 143-151.                                                           | 4.1  | 17        |
| 90 | Study of Emissions from Domestic Solid-Fuel Stove Combustion in Ireland. Energy & Fuels, 2021, 35, 4966-4978.                                                                                  | 5.1  | 17        |

| #   | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Validation of CALINE4 modelling for carbon monoxide concentrations under free-flowing and congested traffic conditions in Ireland. International Journal of Environment and Pollution, 2005, 24, 104.                               | 0.2  | 16        |
| 92  | Seasonal variations in the sources of organic aerosol in Xi'an, Northwest China: The importance of biomass burning and secondary formation. Science of the Total Environment, 2020, 737, 139666.                                    | 8.0  | 16        |
| 93  | Effect of horizontal resolution on meteorology and air-quality prediction with a regional scale model. Atmospheric Research, 2011, 101, 574-594.                                                                                    | 4.1  | 14        |
| 94  | Characterization of volcanic ash from the 2011 GrÃmsvötn eruption byÂmeans of single-particle<br>analysis. Atmospheric Environment, 2013, 79, 411-420.                                                                              | 4.1  | 14        |
| 95  | Wintertime aerosol dominated by solid-fuel-burning emissions across Ireland: insight into the spatial and chemical variation in submicron aerosol. Atmospheric Chemistry and Physics, 2019, 19, 14091-14106.                        | 4.9  | 14        |
| 96  | Contribution of Water-Soluble Organic Matter from Multiple Marine Geographic Eco-Regions to<br>Aerosols around Antarctica. Environmental Science & Technology, 2020, 54, 7807-7817.                                                 | 10.0 | 13        |
| 97  | Marine submicron aerosol gradients, sources and sinks. Atmospheric Chemistry and Physics, 2016, 16, 12425-12439.                                                                                                                    | 4.9  | 12        |
| 98  | Sophisticated Clean Air Strategies Required to Mitigate Against Particulate Organic Pollution.<br>Scientific Reports, 2017, 7, 44737.                                                                                               | 3.3  | 11        |
| 99  | Particulate methanesulfonic acid over the central Mediterranean Sea: Source region identification and relationship with phytoplankton activity. Atmospheric Research, 2020, 237, 104837.                                            | 4.1  | 11        |
| 100 | Linking Marine Biological Activity to Aerosol Chemical Composition and Cloudâ€Relevant Properties<br>Over the North Atlantic Ocean. Journal of Geophysical Research D: Atmospheres, 2020, 125,<br>e2019JD032246.                    | 3.3  | 10        |
| 101 | The impact of traffic on air quality in Ireland: insights from the simultaneous kerbside and suburban monitoring of submicron aerosols. Atmospheric Chemistry and Physics, 2020, 20, 10513-10529.                                   | 4.9  | 10        |
| 102 | Impact of volcanic ash plume aerosol on cloud microphysics. Atmospheric Environment, 2012, 48, 205-218.                                                                                                                             | 4.1  | 9         |
| 103 | Identification of wintertime carbonaceous fine particulate matter (PM2.5) sources in Kaunas,<br>Lithuania using polycyclic aromatic hydrocarbons and stable carbon isotope analysis. Atmospheric<br>Environment, 2020, 237, 117673. | 4.1  | 9         |
| 104 | Six years of surface remote sensing of stratiform warm clouds in marine and continental air over<br>Mace Head, Ireland. Journal of Geophysical Research D: Atmospheres, 2016, 121, 14,538.                                          | 3.3  | 8         |
| 105 | Local and regional air pollution in Ireland during an intensive aerosol measurement campaign.<br>Journal of Environmental Monitoring, 2006, 8, 479.                                                                                 | 2.1  | 7         |
| 106 | Biogenic and anthropogenic organic matter in aerosol over continental Europe: source characterization in the east Baltic region. Journal of Atmospheric Chemistry, 2012, 69, 159-174.                                               | 3.2  | 7         |
| 107 | Summertime Aerosol over the West of Ireland Dominated by Secondary Aerosol during Long-Range<br>Transport. Atmosphere, 2019, 10, 59.                                                                                                | 2.3  | 7         |
| 108 | Seasonal Trends of Aerosol Hygroscopicity and Mixing State in Clean Marine and Polluted<br>Continental Air Masses Over the Northeast Atlantic. Journal of Geophysical Research D: Atmospheres,<br>2021, 126, e2020JD033851.         | 3.3  | 5         |

| #   | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Background levels of black carbon over remote marine locations. Atmospheric Research, 2022, 271, 106119.                                                                                                                                                                                              | 4.1 | 4         |
| 110 | Distinct high molecular weight organic compound (HMW-OC) types in aerosol particles collected at a coastal urban site. Atmospheric Environment, 2017, 171, 118-125.                                                                                                                                   | 4.1 | 3         |
| 111 | The impact of aerosol size-dependent hygroscopicity and mixing state on the cloud condensation nuclei potential over the north-east Atlantic. Atmospheric Chemistry and Physics, 2021, 21, 8655-8675.                                                                                                 | 4.9 | 3         |
| 112 | On the use of reference mass spectra for reducing uncertainty in source apportionment of solid-fuel burning in ambient organic aerosol. Atmospheric Measurement Techniques, 2021, 14, 6905-6916.                                                                                                      | 3.1 | 3         |
| 113 | Phytoplankton Impact on Marine Cloud Microphysical Properties Over the Northeast Atlantic Ocean.<br>Journal of Geophysical Research D: Atmospheres, 2022, 127, .                                                                                                                                      | 3.3 | 3         |
| 114 | Corrigendum to "Aerosol properties associated with air masses arriving into the North<br>East Atlantic during the 2008 Mace Head EUCAARI intensive observing period: an overview"<br>published in Atmos. Chem. Phys., 10, 8413-8435, 2010. Atmospheric Chemistry and Physics, 2010, 10,<br>8549-8549. | 4.9 | 2         |
| 115 | Cleaner air: Brightening the pollution perspective?. , 2013, , .                                                                                                                                                                                                                                      |     | 2         |
| 116 | Seasonality of Aerosol Sources Calls for Distinct Air Quality Mitigation Strategies. Toxics, 2022, 10, 121.                                                                                                                                                                                           | 3.7 | 2         |
| 117 | Effect of instrumental particle sizing resolution on the modelling of aerosol radiative parameters.<br>Journal of Quantitative Spectroscopy and Radiative Transfer, 2010, 111, 753-771.                                                                                                               | 2.3 | 1         |
| 118 | Wind Speed Influences on Aerosol Optical Depth in Clean Marine Air. , 2007, , 1164-1168.                                                                                                                                                                                                              |     | 1         |
| 119 | A Combined Organic–Inorganic Sea-spray Source Function. , 2007, , 1083-1087.                                                                                                                                                                                                                          |     | 1         |
| 120 | Ground-based remote sensing profiling of aerosols and mass concentration above Mace Head, Ireland. , 2013, , .                                                                                                                                                                                        |     | 0         |
| 121 | Submicron sea salt source fluxes. , 2013, , .                                                                                                                                                                                                                                                         |     | 0         |
| 122 | Intercontinental and regional transport of air pollution monitored at Mace Head, Ireland and over Europe. , 2013, , .                                                                                                                                                                                 |     | 0         |
| 123 | A dual behavior of primary marine organics. , 2013, , .                                                                                                                                                                                                                                               |     | 0         |
| 124 | Marine organics effect on sea-spray light scattering. , 2013, , .                                                                                                                                                                                                                                     |     | 0         |
| 125 | Envisioning an Integrated Assessment System and Observation Network for the North Atlantic Ocean.<br>Atmosphere, 2021, 12, 955.                                                                                                                                                                       | 2.3 | 0         |
| 126 | Similarity Between Aerosol Physicochemical Properties at a Coastal Station and Open Ocean over the<br>North Atlantic. , 2007, , 1098-1101.                                                                                                                                                            |     | 0         |

| #   | Article                                                          | IF | CITATIONS |
|-----|------------------------------------------------------------------|----|-----------|
| 127 | Chemical Fluxes in North-east Atlantic Air. , 2007, , 1064-1069. |    | ο         |