Ren-Heng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7291322/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	InVO4-based photocatalysts for energy and environmental applications. Chemical Engineering Journal, 2022, 428, 131145.	6.6	44
2	Regulation of electronic structure of monolayer MoS2 by pressure. Rare Metals, 2022, 41, 1761-1770.	3.6	11
3	First-Principles Calculations on Magnetism Induced by Vacancies in β ₁₂ -Borophene Nanosheets: Implications for Property Modulation. ACS Applied Nano Materials, 2022, 5, 113-119.	2.4	6
4	Three-functional ether-based co-solvents for suppressing water-induced parasitic reactions in aqueous Zn-ion batteries. Energy Storage Materials, 2022, 49, 445-453.	9.5	49
5	Aqueous Electrolytes with Hydrophobic Organic Cosolvents for Stabilizing Zinc Metal Anodes. ACS Nano, 2022, 16, 9667-9678.	7.3	126
6	Defect-induced magnetism in χ3 borophene. Rare Metals, 2022, 41, 3486-3494.	3.6	7
7	Microspherical LiFePO3.98F0.02/3DG/C as an advanced cathode material for high-energy lithium-ion battery with a superior rate capability and long-term cyclability. Ionics, 2021, 27, 1-11.	1.2	12
8	Carrier and vacancy mediated ferrimagnetism in Cu doped rutile TiO ₂ . Journal of Materials Chemistry C, 2021, 9, 2858-2863.	2.7	11
9	Wearable Thermoelectric Generators Based on Liquid Metal. , 2021, , .		0
10	Metal-N4@Graphene as Multifunctional Anchoring Materials for Na-S Batteries: First-Principles Study. Nanomaterials, 2021, 11, 1197.	1.9	12
11	New Insights on the Good Compatibility of Ether-Based Localized High-Concentration Electrolyte with Lithium Metal. , 2021, 3, 838-844.		50
12	Recent Developments of Two-Dimensional Anode Materials and Their Composites in Lithium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7440-7461.	2.5	48
13	Computational Auxiliary for the Progress of Sodium-Ion Solid-State Electrolytes. ACS Nano, 2021, 15, 17232-17246.	7.3	42
14	Flexible electronics based on 2D transition metal dichalcogenides. Journal of Materials Chemistry A, 2021, 10, 89-121.	5.2	66
15	Enhanced electrochemical performances of LiNi0.8Co0.1Mn0.1O2 by synergistic modification of sodium ion doping and silica coating. Solid State Ionics, 2020, 346, 115214.	1.3	20
16	Recent developments in emerging two-dimensional materials and their applications. Journal of Materials Chemistry C, 2020, 8, 387-440.	2.7	501
17	Lithium metal anodes: Present and future. Journal of Energy Chemistry, 2020, 48, 145-159.	7.1	311
18	LiMn ₂ O ₄ Cathode Materials with Excellent Performances by Synergistic Enhancement of Double-Cation (Na ⁺ , Mg ²⁺) Doping and 3DG Coating for Power Lithium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 26106-26116.	1.5	11

Ren-Heng Wang

#	Article	IF	CITATIONS
19	Benchmark Investigation of Band-Gap Tunability of Monolayer Semiconductors under Hydrostatic Pressure with Focus-On Antimony. Nanomaterials, 2020, 10, 2154.	1.9	5
20	Boosting Lithium Storage in Free-Standing Black Phosphorus Anode via Multifunction of Nanocellulose. ACS Applied Materials & amp; Interfaces, 2020, 12, 31628-31636.	4.0	48
21	Potassiumâ€sulfur batteries: Status and perspectives. EcoMat, 2020, 2, e12038.	6.8	41
22	In Situ Surface Protection for Enhancing Stability and Performance of LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ at 4.8 V: The Working Mechanisms. , 2020, 2, 280-290.		44
23	The Rise of 2D Photothermal Materials beyond Graphene for Clean Water Production. Advanced Science, 2020, 7, 1902236.	5.6	206
24	Prediction of the terahertz absorption features with a straightforward molecular dynamics method. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 236, 118330.	2.0	3
25	One-time sintering process to modify xLi2MnO3 (-x)LiMO2 hollow architecture and studying their enhanced electrochemical performances. Journal of Energy Chemistry, 2020, 50, 271-279.	7.1	43
26	Synergistic Modification of Magnesium Fluoride/Sodium for Improving the Electrochemical Performances of High-Nickel Ternary (NCM811) Cathode Materials. Journal of the Electrochemical Society, 2019, 166, A3480-A3486.	1.3	26
27	Flexible Li[Li0.2Ni0.13Co0.13Mn0.54]O2/Carbon Nanotubes/Nanofibrillated Celluloses Composite Electrode for High-Performance Lithium-Ion Battery. Frontiers in Chemistry, 2019, 7, 555.	1.8	12
28	Electrochemical Analysis for Enhancing Interface Layer of Spinel LiNi0.5Mn1.5O4 Using p-Toluenesulfonyl Isocyanate as Electrolyte Additive. Frontiers in Chemistry, 2019, 7, 591.	1.8	18
29	Surfactant-assisted hydrothermal synthesis of V2O5 coated LiNi1/3Co1/3Mn1/3O2 with ideal electrochemical performance. Electrochimica Acta, 2019, 323, 134822.	2.6	32
30	Emerging two-dimensional noncarbon nanomaterials for flexible lithium-ion batteries: opportunities and challenges. Journal of Materials Chemistry A, 2019, 7, 25227-25246.	5.2	44
31	Novel Two-Dimensional Carbon–Chromium Nitride-Based Composite as an Electrocatalyst for Oxygen Reduction Reaction. Frontiers in Chemistry, 2019, 7, 738.	1.8	34
32	Optimal Quantity of Nano-Silicon for Electrospun Silicon/Carbon Fibers as High Capacity Anodes. Frontiers in Chemistry, 2019, 7, 867.	1.8	9
33	Facile Synthesis of Mayenite Electride Nanoparticles Encapsulated in Graphitic Shells Like Carbon Nano Onions: Non-noble-metal Electrocatalysts for Oxygen Reduction Reaction (ORR). Frontiers in Chemistry, 2019, 7, 934.	1.8	27
34	Fluoroethylene Carbonate Enabling a Robust LiFâ€rich Solid Electrolyte Interphase to Enhance the Stability of the MoS ₂ Anode for Lithiumâ€lon Storage. Angewandte Chemie, 2018, 130, 3718-3722.	1.6	40
35	Fluoroethylene Carbonate Enabling a Robust LiFâ€rich Solid Electrolyte Interphase to Enhance the Stability of the MoS ₂ Anode for Lithiumâ€ŀon Storage. Angewandte Chemie - International Edition, 2018, 57, 3656-3660.	7.2	149
36	Honeycomb‣anternâ€Inspired 3D Stretchable Supercapacitors with Enhanced Specific Areal Capacitance. Advanced Materials, 2018, 30, e1805468.	11,1	152

Ren-Heng Wang

#	Article	IF	CITATIONS
37	Electrochemical analysis graphite/electrolyte interface in lithium-ion batteries: p-Toluenesulfonyl isocyanate as electrolyte additive. Nano Energy, 2017, 34, 131-140.	8.2	208
38	Electrochemical Analysis the influence of Propargyl Methanesulfonate as Electrolyte Additive for Spinel LTO Interface Layer. Electrochimica Acta, 2017, 241, 208-219.	2.6	30
39	Manganese dissolution from LiMn2O4 cathodes at elevated temperature: methylene methanedisulfonate as electrolyte additive. Journal of Solid State Electrochemistry, 2016, 20, 19-28.	1.2	21
40	Impacts of vinyl ethylene carbonate and vinylene carbonate on lithium manganese oxide spinel cathode at elevated temperature. Journal of Alloys and Compounds, 2015, 632, 435-444.	2.8	12
41	Effect of methylene methanedisulfonate as an additive on the cycling performance of spinel lithium titanate electrode. Journal of Alloys and Compounds, 2015, 648, 512-520.	2.8	18
42	PEG-combined liquid phase synthesis and electrochemical properties of carbon-coated Li3V2(PO4)3. Transactions of Nonferrous Metals Society of China, 2015, 25, 1241-1247.	1.7	2
43	Electrochemical analysis for cycle performance and capacity fading of lithium manganese oxide spinel cathode at elevated temperature using p-toluenesulfonyl isocyanate as electrolyte additive. Electrochimica Acta, 2015, 180, 815-823.	2.6	32
44	Electrochemical Analysis for Enhancing Interface Layer of Spinel Li ₄ Ti ₅ O ₁₂ : <i>p</i> -Toluenesulfonyl Isocyanate as Electrolyte Additive. ACS Applied Materials & Interfaces, 2015, 7, 23605-23614.	4.0	54
45	Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. Journal of Power Sources, 2015, 299, 334-341.	4.0	142
46	Comparative study of lithium bis(oxalato)borate and lithium bis(fluorosulfonyl)imide on lithium manganese oxide spinel lithium-ion batteries. Journal of Alloys and Compounds, 2015, 624, 74-84.	2.8	14
47	Lithium carbonate as an electrolyte additive for enhancing the high-temperature performance of lithium manganese oxide spinel cathode. Journal of Alloys and Compounds, 2015, 618, 349-356.	2.8	21
48	Enhanced electrochemical performance in LiNi0.8Co0.15Al0.05O2 cathode material: Resulting from Mn-surface-modification using a facile oxidizing–coating method. Materials Letters, 2014, 115, 49-52.	1.3	26
49	Structural and electrochemical performance of Na-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries via rheological phase reaction. Journal of Alloys and Compounds, 2013, 575, 268-272.	2.8	36
50	Localizing epileptic focus and assessing electrical stimulus effects on epilepsy in rats using stretchable micro electrocorticogram electrodes. Science China Materials, 0, , .	3.5	2