Zidong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/72909/publications.pdf

Version: 2024-02-01

31976 49909 8,978 168 53 citations h-index papers

87 g-index 171 171 171 10111 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review. Nano Materials Science, 2022, 4, 339-350.	8.8	57
2	Novel Al-doped CdIn2O4 nanofibers based gas sensor for enhanced low-concentration n-butanol sensing. Sensors and Actuators B: Chemical, 2022, 351, 130946.	7.8	35
3	Binder-free three-dimensional interconnected $CuV < sub > 2 < / sub > 0 < sub > 5 < / sub > \hat{A} \cdot (i > n < / i > H < sub > 2 < / sub > 0 nests as cathodes for high-loading aqueous zinc-ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 792-804.$	6.0	16
4	Oxygen vacancies promoted heterogeneous catalytic ozonation of atrazine by defective 4A zeolite. Journal of Cleaner Production, 2022, 336, 130376.	9.3	18
5	Trimetallic metal-organic frameworks (Fe, Co, Ni-MOF) derived as efficient electrochemical determination for ultra-micro imidacloprid in vegetables. Nanotechnology, 2022, 33, 135502.	2.6	16
6	A two-dimensional Ti ₃ C ₂ T _{<i>X</i><_{ MXene@TiO₂/MoS₂ heterostructure with excellent selectivity for the room temperature detection of ammonia. Journal of Materials Chemistry A, 2022, 10, 5505-5519.}}	10.3	76
7	Preparation of NaV ₆ O ₁₅ Nanosheet Cathodes with High Cycling Performance and Good Capacity Retention Rate in Aqueous Zincâ€lon Batteries. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	7
8	Electrochemical zinc and hydrogen co-intercalation in Li3(V6O16): A high-capacity aqueous zinc-ion battery cathode. Electrochimica Acta, 2022, 412, 140120.	5.2	11
9	Porous cobaltate: Structure, active sites, thermocatalytic properties for ammonium perchlorate decomposition. Journal of Alloys and Compounds, 2022, 908, 164624.	5.5	11
10	V ₂ O ₅ /NaV ₆ O ₁₅ nanocomposites synthesized by molten salt method as a high-performances cathode material for aqueous zinc-ion batteries. Nanotechnology, 2022, 33, 115402.	2.6	2
11	Electrocatalytic performance of mesoporous NiCo2O4 nanosheets with elemental electron synergy towards direct glucose in alkaline solution. Journal of Physics and Chemistry of Solids, 2022, 167, 110784.	4.0	0
12	Nickel foam electrode decorated with Fe-CdIn2O4 nanoparticles as an effective electrochemical sensor for non-enzymatic glucose detection. Journal of Electroanalytical Chemistry, 2022, 919, 116524.	3.8	9
13	Mesoporous CuCo2O4 rods modified glassy carbon electrode as a novel non-enzymatic amperometric electrochemical sensors with high-sensitive ascorbic acid recognition. Journal of Alloys and Compounds, 2021, 852, 157045.	5.5	30
14	Multi-sized nanosheets cobalt-iron layered double hydroxide grown on nickel foam as high performance supercapacitor electrode material. Journal of Energy Storage, 2021, 33, 102088.	8.1	10
15	High-performance non-enzymatic glucose sensors based on porous Co3O4 synthesized by coprecipitation method with the different precipitants. Ionics, 2021, 27, 1803-1812.	2.4	4
16	Sm-doped SnO2 nanoparticles synthesized via solvothermal method as a high-performance formaldehyde sensing material for gas sensors. Journal of Materials Science: Materials in Electronics, 2021, 32, 8249-8264.	2.2	13
17	Fluorescence  turn-on' probe for Al ³⁺ Âdetection in water based on ZnS/ZnO quantum dots with excellent selectivity and stability. Nanotechnology, 2021, 32, 375001.	2.6	2
18	One-dimensional In ₂ O ₃ nanorods as sensing material for ppb-level n-butanol detection. Nanotechnology, 2021, 32, 375501.	2.6	20

#	Article	IF	Citations
19	Gas sensing materials roadmap. Journal of Physics Condensed Matter, 2021, 33, 303001.	1.8	49
20	Excellent fluorescence detection of Cu ²⁺ in water system using N-acetyl-L-cysteines modified CdS quantum dots as fluorescence probe. Nanotechnology, 2021, 32, 405707.	2.6	16
21	Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Materials Science, 2021, 3, 390-403.	8.8	106
22	A novel non-enzymatic glucose electrochemical sensor with high sensitivity and selectivity based on Cdln ₂ O ₄ nanoparticles on 3D Ni foam substrate. Nanotechnology, 2021, 32, 405502.	2.6	7
23	Amino-capped zinc oxide modified tin oxide electron transport layer for efficient perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100590.	5.6	15
24	Partially oxidized Ti3C2Tx MXene-sensitive material-based ammonia gas sensor with high-sensing performances for room temperature application. Journal of Materials Science: Materials in Electronics, 2021, 32, 27837-27848.	2.2	16
25	ZnO-SnO2 nanocomposites modified by PdO nanoparticles named PdO-ZSO as gas sensing material for hydrogen and butane with the excellent response time and recovery time. Journal of Materials Science: Materials in Electronics, 2021, 32, 28891-28908.	2.2	4
26	Shaddock peels as bio-templates synthesis of Cd-doped SnO2 nanofibers: A high performance formaldehyde sensing material. Journal of Alloys and Compounds, 2020, 813, 152170.	5.5	59
27	Novel method for the qualitative identification of chromium ions (III) using l-aspartic acid stabilized CdS quantum dots. Journal of Physics and Chemistry of Solids, 2020, 136, 109160.	4.0	8
28	Macro-/meso-porous NiCo2O4 synthesized by template-free solution combustion to enhance the performance of a nonenzymatic amperometric glucose sensor. Mikrochimica Acta, 2020, 187, 64.	5.0	39
29	A novel and sensitive ratiometric fluorescence assay for carbendazim based on N-doped carbon quantum dots and gold nanocluster nanohybrid. Journal of Hazardous Materials, 2020, 386, 121958.	12.4	92
30	A review on WO3 based gas sensors: Morphology control and enhanced sensing properties. Journal of Alloys and Compounds, 2020, 820, 153194.	5.5	200
31	Hierarchically porous carbon derived from the activation of waste chestnut shells by potassium bicarbonate (KHCO ₃) for highâ€performance supercapacitor electrode. International Journal of Energy Research, 2020, 44, 988-999.	4.5	42
32	Nanosheets based mixed structure CuCo2O4 hydrothermally grown on Ni foam applied as binder-free supercapacitor electrodes. Journal of Energy Storage, 2020, 32, 101865.	8.1	19
33	Construction of novel Pd–SnO2 composite nanoporous structure as a high-response sensor for methane gas. Journal of Alloys and Compounds, 2020, 826, 154063.	5.5	53
34	CeO2 nanoparticles modified by CuO nanoparticles for low-temperature CO oxidation with high catalytic activity. Journal of Physics and Chemistry of Solids, 2020, 147, 109651.	4.0	47
35	Potassium sulphate (K 2 SO 4) activation of chestnut shell to oxygenâ€enriched porous carbons with enhanced capacitive properties. International Journal of Energy Research, 2020, 44, 5385-5396.	4.5	8
36	Dual-emission ratiometric fluorescent detection of dinotefuran based on sulfur-doped carbon quantum dots and copper nanocluster hybrid. Sensors and Actuators B: Chemical, 2020, 321, 128534.	7.8	46

#	Article	IF	CITATIONS
37	Hierarchitecture Co 2 (OH) 3 Cl@FeCo 2 O 4 composite as a novel and highâ€performance electrode material applied in supercapacitor. International Journal of Energy Research, 2020, 44, 3122-3133.	4.5	10
38	Water-soluble ZnO quantum dots modified by (3-aminopropyl)triethoxysilane: The promising fluorescent probe for the selective detection of Cu2+ ion in drinking water. Journal of Alloys and Compounds, 2020, 825, 153904.	5 . 5	40
39	One-pot synthesis of N-doped graphene quantum dots as highly sensitive fluorescent sensor for detection of mercury ions water solutions. Materials Research Express, 2019, 6, 095615.	1.6	15
40	Nanoporous network SnO2 constructed with ultra-small nanoparticles for methane gas sensor. Journal of Materials Science: Materials in Electronics, 2019, 30, 14325-14334.	2.2	13
41	Gas response enhancement of VOCs sensor based on Sn doped nanoporous anatase TiO ₂ nanoparticles at a relative low operating temperature. Materials Research Express, 2019, 6, 105008.	1.6	3
42	Fluorescent ZnO quantum dots synthesized with urea for the selective detection of Cr ⁶⁺ ion in water with a wide range of concentrations. Methods and Applications in Fluorescence, 2019, 7, 035007.	2.3	14
43	Jute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorber. Journal of Alloys and Compounds, 2019, 803, 1119-1126.	5.5	51
44	Ag decorated ZnO nanocrystallines synthesized by a low-temperature solvothermal method and their application for high response H2 gas sensor. Journal of Materials Science: Materials in Electronics, 2019, 30, 18959-18969.	2.2	11
45	Citric Acid Capped CdS Quantum Dots for Fluorescence Detection of Copper Ions (II) in Aqueous Solution. Nanomaterials, 2019, 9, 32.	4.1	25
46	L-Aspartic Acid Capped CdS Quantum Dots as a High Performance Fluorescence Assay for Sliver Ions (I) Detection. Nanomaterials, 2019 , 9 , 1165 .	4.1	10
47	Thioglycolic acid-capped ZnSe quantum dots as nanoprobe for cobalt(II) and iron(III) via measurement of grey level, UV-vis spectra and dynamic light scattering. Mikrochimica Acta, 2019, 186, 444.	5.0	9
48	The Fluorescent Quenching Mechanism of N and S Co-Doped Graphene Quantum Dots with Fe3+ and Hg2+ lons and Their Application as a Novel Fluorescent Sensor. Nanomaterials, 2019, 9, 738.	4.1	32
49	Pt decorated SnO2 nanoparticles for high response CO gas sensor under the low operating temperature. Journal of Materials Science: Materials in Electronics, 2019, 30, 3921-3932.	2.2	15
50	Pd-Functionalized SnO2 Nanofibers Prepared by Shaddock Peels as Bio-Templates for High Gas Sensing Performance toward Butane. Nanomaterials, 2019, 9, 13.	4.1	15
51	â€~Green' prepare SnO2 nanofibers by shaddock peels: application for detection of volatile organic compound gases. Journal of Materials Science: Materials in Electronics, 2019, 30, 3032-3044.	2.2	8
52	Rhodamine B assisted graphene quantum dots flourescent sensor system for sensitive recognition of mercury ions. Journal of Luminescence, 2019, 207, 273-281.	3.1	20
53	From Water and Ni Foam to a Ni(OH)2 @Ni Foam Binder-Free Supercapacitor Electrode: A Green Corrosion Route. ChemElectroChem, 2018, 5, 409-409.	3.4	4
54	Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co2+ through the measurement of grey level. Sensors and Actuators B: Chemical, 2018, 260, 1068-1075.	7.8	24

#	Article	IF	Citations
55	Raspberry-like SnO 2 hollow nanostructure as a high response sensing material of gas sensor toward n-butanol gas. Journal of Physics and Chemistry of Solids, 2018, 120, 173-182.	4.0	50
56	SnO2 quantum dots with rapid butane detection at lower ppm-level. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	2.3	4
57	A low temperature butane gas sensor used Pt nanoparticles-modified AZO macro/mesoporous nanosheets as sensing material. Sensors and Actuators B: Chemical, 2018, 254, 227-238.	7.8	21
58	Synthesis of core-shell carbon sphere@nickel oxide composites and their application for supercapacitors. Ionics, 2018, 24, 513-521.	2.4	19
59	Grey level replaces fluorescent intensity: Fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu2+ without photoluminescence spectrometer. Sensors and Actuators B: Chemical, 2018, 255, 2356-2366.	7.8	24
60	Gas-sensing performances of Cd-doped ZnO nanoparticles synthesized by a surfactant-mediated method for n-butanol gas. Journal of Physics and Chemistry of Solids, 2018, 112, 43-49.	4.0	47
61	Nonaqueous synthesis of Pd-functionalized SnO2/In2O3 nanocomposites for excellent butane sensing properties. Sensors and Actuators B: Chemical, 2018, 257, 419-426.	7.8	21
62	Electrochemical performance of mesoporous ZnCo2O4 nanosheets as an electrode material for supercapacitor. Ionics, 2018, 24, 2435-2443.	2.4	65
63	From Water and Ni Foam to a Ni(OH) ₂ @Ni Foam Binderâ€Free Supercapacitor Electrode: A Green Corrosion Route. ChemElectroChem, 2018, 5, 434-444.	3.4	12
64	CdIn2O4 nanoporous thin film gas-sensor for formaldehyde detection. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 18-24.	2.7	16
65	The high efficient catalytic properties for thermal decomposition of ammonium perchlorate using mesoporous ZnCo2O4 rods synthesized by oxalate co-precipitation method. Scientific Reports, 2018, 8, 7571.	3.3	63
66	Sensitive and selective n-butanol gas detection based on ZnO nanocrystalline synthesized by a low-temperature solvothermal method. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103, 143-150.	2.7	33
67	Ptâ€Functionalized Nanoporous TiO ₂ Nanoparticles With Enhanced Gas Sensing Performances Toward Acetone. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800100.	1.8	14
68	One-step hydrothermal synthesis of thioglycolic acid capped CdS quantum dots as fluorescence determination of cobalt ion. Scientific Reports, 2018, 8, 8953.	3.3	32
69	\hat{l}^2 -MnO2 microrods for the degradation of methyl orange under acid condition from aqueous solutions. Research on Chemical Intermediates, 2017, 43, 3975-3987.	2.7	8
70	Mn3O4/activated carbon composites with enhanced electrochemical performances for electrochemical capacitors. Journal of Alloys and Compounds, 2017, 703, 163-173.	5.5	31
71	Combustion agent mediated flash synthesis of porous MCo 2 O 4 (M = Zn, Ni, Cu and Fe) via self-sustained decomposition of metal-organic complexes. Materials Letters, 2017, 195, 123-126.	2.6	8
72	The electrochemical performances of NiCo2O4 nanoparticles synthesized by one-step solvothermal method. lonics, 2017, 23, 2457-2463.	2.4	23

#	Article	IF	Citations
73	Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites. Sensors and Actuators B: Chemical, 2017, 247, 797-806.	7.8	100
74	Pd nanoparticles composited SnO2 microspheres as sensing materials for gas sensors with enhanced hydrogen response performances. Journal of Alloys and Compounds, 2017, 710, 216-224.	5. 5	70
75	TiO2 nanoparticles functionalized by Pd nanoparticles for gas-sensing application with enhanced butane response performances. Scientific Reports, 2017, 7, 7692.	3.3	35
76	Carbon spheres@MnO2 core-shell nanocomposites with enhanced dielectric properties for electromagnetic shielding. Scientific Reports, 2017, 7, 15841.	3.3	38
77	Cerium oxide nanoparticles/multi-wall carbon nanotubes composites: Facile synthesis and electrochemical performances as supercapacitor electrode materials. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 86, 284-291.	2.7	66
78	Combustion synthesized hierarchically porous Mn ₃ O ₄ for catalytic degradation of methyl orange. Canadian Journal of Chemical Engineering, 2017, 95, 643-647.	1.7	6
79	Electrochemical performance of CeO2 nanoparticle-decorated graphene oxide as an electrode material for supercapacitor. Ionics, 2017, 23, 121-129.	2.4	62
80	Acetone sensing performances based on nanoporous TiO2 synthesized by a facile hydrothermal method. Sensors and Actuators B: Chemical, 2017, 238, 491-500.	7.8	115
81	Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sensors and Actuators B: Chemical, 2017, 238, 264-273.	7.8	280
82	A high performance methanol gas sensor based on palladium-platinum-ln2O3 composited nanocrystalline SnO2. Sensors and Actuators B: Chemical, 2016, 237, 133-141.	7.8	65
83	A general nonaqueous sol-gel route to g-C3N4-coupling photocatalysts: the case of Z-scheme g-C3N4/TiO2 with enhanced photodegradation toward RhB under visible-light. Scientific Reports, 2016, 6, 39531.	3.3	85
84	Enhanced microwave absorption properties of MnO2 hollow microspheres consisted of MnO2 nanoribbons synthesized by a facile hydrothermal method. Journal of Alloys and Compounds, 2016, 676, 224-230.	5.5	52
85	A highly sensitive VOC gas sensor using p-type mesoporous Co3O4 nanosheets prepared by a facile chemical coprecipitation method. Sensors and Actuators B: Chemical, 2016, 233, 615-623.	7.8	137
86	The xylene sensing performance of WO ₃ decorated anatase TiO ₂ nanoparticles as a sensing material for a gas sensor at a low operating temperature. RSC Advances, 2016, 6, 49692-49701.	3.6	53
87	Enhanced methanol sensing properties of SnO ₂ microspheres in a composite with Pt nanoparticles. RSC Advances, 2016, 6, 83870-83879.	3.6	41
88	Combustion synthesized hierarchically porous WO3 for selective acetone sensing. Materials Chemistry and Physics, 2016, 184, 155-161.	4.0	25
89	Macro-/nanoporous Al-doped ZnO via self-sustained decomposition of metal-organic complexes for application in degradation of Congo red. Ceramics International, 2016, 42, 18914-18924.	4.8	14
90	Self-grown MnO 2 nanosheets on carbon fiber paper as high-performance supercapacitors electrodes. Electrochimica Acta, 2016, 217, 16-23.	5.2	43

#	Article	IF	Citations
91	Effect of calcination temperatures on the electrochemical performances of nickel oxide/reduction graphene oxide (NiO/RGO) composites synthesized by hydrothermal method. Journal of Physics and Chemistry of Solids, 2016, 98, 209-219.	4.0	37
92	Ag-Functionalized macro-/mesoporous AZO synthesized by solution combustion for VOCs gas sensing application. RSC Advances, 2016, 6, 101304-101312.	3.6	20
93	Flash synthesis of Al-doping macro-/nanoporous ZnO from self-sustained decomposition of Zn-based complex for superior gas-sensing application to n-butanol. Sensors and Actuators B: Chemical, 2016, 237, 90-98.	7.8	36
94	A high response butanol gas sensor based on ZnO hollow spheres. Sensors and Actuators B: Chemical, 2016, 237, 423-430.	7.8	137
95	RGO/KMn8O16 composite as supercapacitor electrode with high specific capacitance. Ceramics International, 2016, 42, 5195-5202.	4.8	19
96	A one-step nonaqueous sol–gel route to mixed-phase TiO ₂ with enhanced photocatalytic degradation of Rhodamine B under visible light. CrystEngComm, 2016, 18, 1964-1975.	2.6	33
97	Biomorphic synthesis of hollow CuO fibers for low-ppm-level n-propanol detection via a facile solution combustion method. Sensors and Actuators B: Chemical, 2016, 230, 1-8.	7.8	79
98	Cd doped porous Co3O4 nanosheets as electrode material for high performance supercapacitor application. Electrochimica Acta, 2016, 196, 316-327.	5.2	113
99	Facile synthesis of CuO micro-sheets over Cu foil in oxalic acid solution and their sensing properties towards n-butanol. Journal of Materials Chemistry C, 2016, 4, 985-990.	5 . 5	14
100	Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sensors and Actuators B: Chemical, 2016, 224, 193-200.	7.8	114
101	DNAâ€Encoded Tuning of Geometric and Plasmonic Properties of Nanoparticles Growing from Gold Nanorod Seeds. Angewandte Chemie, 2015, 127, 8232-8236.	2.0	17
102	DNAâ€Encoded Tuning of Geometric and Plasmonic Properties of Nanoparticles Growing from Gold Nanorod Seeds. Angewandte Chemie - International Edition, 2015, 54, 8114-8118.	13.8	109
103	Meso- and macroporous coral-like Co3O4 for VOCs gas sensor. Ceramics International, 2015, 41, 11004-11012.	4.8	93
104	Flash Synthesis and CO Oxidation of Macro-/Nano-porous Co3O4–CeO2 Via Self-Sustained Decomposition of Metal–Organic Complexes. Catalysis Letters, 2015, 145, 1344-1350.	2.6	11
105	Enhanced formaldehyde sensing performance of 3D hierarchical porous structure Pt-functionalized NiO via a facile solution combustion synthesis. Sensors and Actuators B: Chemical, 2015, 220, 171-179.	7.8	75
106	Morphology control of porous CuO by surfactant using combustion method. Applied Surface Science, 2015, 349, 844-848.	6.1	47
107	A novel microwave absorption material of Ni doped cryptomelane type manganese oxides. Ceramics International, 2015, 41, 5688-5695.	4.8	16
108	Controllable synthesis and change of emission color from green to orange of ZnO quantum dots using different solvents. New Journal of Chemistry, 2015, 39, 2881-2888.	2.8	50

7

#	Article	IF	Citations
109	Catalytic activity for CO oxidation of Cu–CeO ₂ composite nanoparticles synthesized by a hydrothermal method. Analytical Methods, 2015, 7, 3238-3245.	2.7	45
110	Surfactant-mediated synthesis of ZnCo2O4 powders as a high-performance anode material for Li-ion batteries. Ionics, 2015, 21, 623-628.	2.4	9
111	Facile synthesis and gas sensing performances based on nickel oxide nanoparticles/multi-wall carbon nanotube composite. Journal of Materials Science: Materials in Electronics, 2015, 26, 8240-8248.	2.2	13
112	A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermal route. RSC Advances, 2015, 5, 54372-54378.	3.6	74
113	Enhanced formaldehyde sensing properties of SnO ₂ nanorods coupled with Zn ₂ SnO ₄ . RSC Advances, 2015, 5, 42628-42636.	3.6	30
114	Agâ€"ZnO heterostructure nanoparticles with plasmon-enhanced catalytic degradation for Congo red under visible light. RSC Advances, 2015, 5, 34456-34465.	3.6	65
115	A facile hydrothermal synthesis of MnO ₂ nanorod–reduced graphene oxide nanocomposites possessing excellent microwave absorption properties. RSC Advances, 2015, 5, 88979-88988.	3.6	113
116	Nanoparticle cluster gas sensor: Pt activated SnO ₂ nanoparticles for NH ₃ detection with ultrahigh sensitivity. Nanoscale, 2015, 7, 14872-14880.	5 . 6	284
117	NiO nanosheets assembled into hollow microspheres for highly sensitive and fast-responding VOC sensors. RSC Advances, 2015, 5, 80786-80792.	3.6	14
118	Butane detection: W-doped TiO ₂ nanoparticles for a butane gas sensor with high sensitivity and fast response/recovery. RSC Advances, 2015, 5, 96539-96546.	3.6	26
119	Enhancing phosphate removal from water by using ordered mesoporous silica loaded with samarium oxide. Analytical Methods, 2015, 7, 10052-10060.	2.7	17
120	Porous NiO nanosheets self-grown on alumina tube using a novel flash synthesis and their gas sensing properties. RSC Advances, 2015, 5, 4880-4885.	3.6	52
121	Synthesis of mixed Mn–Ce–Ox one dimensional nanostructures and their catalytic activity for CO oxidation. Ceramics International, 2015, 41, 4675-4682.	4.8	22
122	Structure and catalytic activity of 3D macro/mesoporous Co3O4 for CO oxidation prepared by a facile self-sustained decomposition of metal–organic complexes. Journal of Molecular Catalysis A, 2015, 398, 79-85.	4.8	37
123	Combustion synthesis of porous Pt-functionalized SnO ₂ sheets for isopropanol gas detection with a significant enhancement in response. Journal of Materials Chemistry A, 2014, 2, 20089-20095.	10.3	106
124	A designed Mn2O3/MCM-41 nanoporous composite for methylene blue and rhodamine B removal with high efficiency. Ceramics International, 2014, 40, 8093-8101.	4.8	35
125	Facile synthesis of $\hat{l}\pm$ -MnO2 nanorods at low temperature and their microwave absorption properties. Materials Chemistry and Physics, 2014, 143, 1061-1068.	4.0	62
126	Isopropanol sensing properties of coral-like ZnO–CdO composites by flash preparation via self-sustained decomposition of metal–organic complexes. Sensors and Actuators B: Chemical, 2014, 198, 402-410.	7.8	83

#	Article	IF	Citations
127	Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol–gel method under different heat treatments. Ceramics International, 2014, 40, 9931-9939.	4.8	43
128	Novel Mixed Phase SnO ₂ Nanorods Assembled with SnO ₂ Nanocrystals for Enhancing Gas-Sensing Performance toward Isopropanol Gas. Journal of Physical Chemistry C, 2014, 118, 9832-9840.	3.1	146
129	SnO2 nanorods based sensing material as an isopropanol vapor sensor. New Journal of Chemistry, 2014, 38, 2443.	2.8	56
130	Flash synthesis of macro-/nanoporous ZnCo 2 O 4 via self-sustained decomposition of metal–organic complexes. Materials Letters, 2014, 134, 138-141.	2.6	25
131	Hydrothermal growth of ZnO nanorods on Zn substrates and their application in degradation of azo dyes under ambient conditions. CrystEngComm, 2014, 16, 7761-7770.	2.6	42
132	Photocatalytic degradation properties of Ni(OH)2 nanosheets/ZnO nanorods composites for azo dyes under visible-light irradiation. Ceramics International, 2014, 40, 57-65.	4.8	62
133	Structure, morphologies and dye removal efficiency of ZnO nanorods grown on polycrystalline Zn substrate. Superlattices and Microstructures, 2014, 74, 279-293.	3.1	9
134	Lanthanum Dioxide Carbonate La2O2CO3 Nanorods as a Sensing Material for Chemoresistive CO2 Gas Sensor. Electrochimica Acta, 2014, 127, 355-361.	5.2	57
135	Enhanced and tunable fluorescent quantum dots within a single crystal of protein. Nano Research, 2013, 6, 627-634.	10.4	24
136	Synthesis, characterization and photoluminescent properties of rare-earth hydroxides and oxides nanorods by hydrothermal route. Applied Physics A: Materials Science and Processing, 2013, 111, 1229-1240.	2.3	16
137	Catalytic photodegradation of Congo red in aqueous solution by Ln(OH)3 (Ln = Nd, Sm, Eu, Gd, Tb, and) Tj ETQq1	1.0.78431 4.3.78431	 4_rgBT 0\ 68
138	A facial method to synthesize Ni(OH)2 nanosheets for improving the adsorption properties of Congo red in aqueous solution. Powder Technology, 2013, 235, 121-125.	4.2	23
139	Structural and photocatalytic properties of nickel-doped zinc oxide powders with variable dopant contents. Journal of Physics and Chemistry of Solids, 2013, 74, 1196-1203.	4.0	52
140	FACILE SYNTHESIS AND MICROWAVE ABSORPTION PROPERTIES OF α-MnO2 NANORODS. Functional Materials Letters, 2012, 05, 1250043.	1.2	7
141	Synthesis, characterization and room temperature photoluminescence properties of Al doped ZnO nanorods. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1399-1405.	2.7	32
142	Surfactant-assisted synthesis of CeO2 nanoparticles and their application in wastewater treatment. RSC Advances, 2012, 2, 12413.	3.6	186
143	Discovery of the DNA "Genetic Code―for Abiological Gold Nanoparticle Morphologies. Angewandte Chemie - International Edition, 2012, 51, 9078-9082.	13.8	128
144	Acetone detection properties of single crystalline tungsten oxide plates synthesized by hydrothermal method using cetyltrimethyl ammonium bromide supermolecular template. Sensors and Actuators B: Chemical, 2012, 162, 259-268.	7.8	66

#	Article	IF	Citations
145	Hydrothermal Synthesis of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mrow> <mml:mtext> SnC mathvariant="bold"> 2 </mml:mtext></mml:mrow></mml:mrow></mml:msub> </mml:mrow> </mml:math> Nanostructures with Different Morphologies and Their Optical Properties. Journal of Nanomaterials, 2011, 2011, 1-10.	<td>ext > < /mml:r</td>	ext > < /mml:r
146	Electrochemical performance of W-doped anatase TiO2 nanoparticles as an electrode material for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 6006.	6.7	81
147	A simple method to prepare Ln(OH)3 (Ln=La, Sm, Tb, Eu, and Gd) nanorods using CTAB micelle solution and their room temperature photoluminescence properties. Journal of Alloys and Compounds, 2011, 509, 2060-2065.	5.5	59
148	Preparation, characterization and room temperature photoluminescence properties of a zinc oxide nanosheet network grown on glass substrate by a facile chemical route. Superlattices and Microstructures, 2011, 50, 311-318.	3.1	1
149	Microwave absorption characteristics of manganese dioxide with different crystalline phase and nanostructures. Materials Chemistry and Physics, 2010, 124, 639-645.	4.0	53
150	Synthesis, characterization and room temperature photoluminescence properties of briers-like ZnO nanoarchitectures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 167, 177-181.	3.5	10
151	DNA-Mediated Control of Metal Nanoparticle Shape: One-Pot Synthesis and Cellular Uptake of Highly Stable and Functional Gold Nanoflowers. Nano Letters, 2010, 10, 1886-1891.	9.1	278
152	Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature. Journal of Alloys and Compounds, 2010, 493, 202-207.	5. 5	224
153	Niobium Doped TiO ₂ with Mesoporosity and Its Application for Lithium Insertion. Chemistry of Materials, 2010, 22, 6624-6631.	6.7	127
154	A nonaqueous sol–gel route to synthesize CdIn2O4 nanoparticles for the improvement of formaldehyde-sensing performance. Scripta Materialia, 2009, 61, 935-938.	5.2	21
155	Surfactant CATB-assisted generation and gas-sensing characteristics of LnFeO3 (Ln=La, Sm, Eu) materials. Sensors and Actuators B: Chemical, 2009, 143, 124-131.	7.8	62
156	Antimony-Doped SnO ₂ Nanopowders with High Crystallinity for Lithium-Ion Battery Electrode. Chemistry of Materials, 2009, 21, 3202-3209.	6.7	172
157	Functional DNA directed assembly of nanomaterials for biosensing. Journal of Materials Chemistry, 2009, 19, 1788.	6.7	129
158	Ordered Mesoporous Sb-, Nb-, and Ta-Doped SnO ₂ Thin Films with Adjustable Doping Levels and High Electrical Conductivity. ACS Nano, 2009, 3, 1373-1378.	14.6	175
159	Labelâ€Free Colorimetric Detection of Lead Ions with a Nanomolar Detection Limit and Tunable Dynamic Range by using Gold Nanoparticles and DNAzyme. Advanced Materials, 2008, 20, 3263-3267.	21.0	426
160	Effects of calcining temperature on the phase structure and the formaldehyde gas sensing properties of CdO-mixed In2O3. Sensors and Actuators B: Chemical, 2008, 135, 219-223.	7.8	51
161	A Highly Sensitive and Fast-Responding Ethanol Sensor Based on Cdln ₂ O ₄ Nanocrystals Synthesized by a Nonaqueous Solâ^'Gel Route. Chemistry of Materials, 2008, 20, 5781-5786.	6.7	93
162	Highly sensitive "turn-on―fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chemical Communications, 2008, , 6005.	4.1	253

ZIDONG WANG

#	Article	IF	CITATION
163	Formation of manganite fibers under the directing of cationic surfactant. Materials Science and Engineering C, 2006, 26, 653-656.	7.3	9
164	Preparation and gas-sensing properties of NiFe2O4 semiconductor materials. Solid-State Electronics, 2005, 49, 1029-1033.	1.4	62
165	Synthesis and characterization of ordered hexagonal and cubic mesoporous tin oxides via mixed-surfactant templates route. Journal of Colloid and Interface Science, 2005, 286, 627-631.	9.4	13
166	Preparation and photoluminescence properties of organic–inorganic nanocomposite with a mesolamellar nickel oxide. Microporous and Mesoporous Materials, 2004, 71, 99-102.	4.4	23
167	Mesostructured SnO2 as sensing material for gas sensors. Solid-State Electronics, 2004, 48, 627-632.	1.4	74
168	Preparation and characterization of MnOOH and \hat{l}^2 -MnO 2 whiskers. Inorganic Chemistry Communication, 2002, 5, 747-750.	3.9	56