Jae Hoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7290773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complex Stapes Motions in Human Ears. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 329-341.	1.8	73
2	Soft Tissue Morphometry of the Malleus–Incus Complex from Micro-CT Imaging. JARO - Journal of the Association for Research in Otolaryngology, 2008, 9, 5-21.	1.8	64
3	Extra- and Intracochlear Electrocochleography in Cochlear Implant Recipients. Audiology and Neuro-Otology, 2015, 20, 339-348.	1.3	60
4	The Influence of Prosthesis Diameter in Stapes Surgery. Otology and Neurotology, 2011, 32, 520-528.	1.3	57
5	Correlation of Electrophysiological Properties and Hearing Preservation in Cochlear Implant Patients. Otology and Neurotology, 2015, 36, 1172-1180.	1.3	41
6	Influence of stimulation position on the sensitivity for bone conduction hearing aids without skin penetration. International Journal of Audiology, 2016, 55, 439-446.	1.7	40
7	Sound wave propagation on the human skull surface with bone conduction stimulation. Hearing Research, 2017, 355, 1-13.	2.0	37
8	Calculation of inertial properties of the malleus-incus complex from micro-CT imaging. Journal of Mechanics of Materials and Structures, 2007, 2, 1515-1524.	0.6	33
9	Characterization of Stapes Anatomy: Investigation of Human and Guinea Pig. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 159-173.	1.8	32
10	Experimental investigation of promontory motion and intracranial pressure following bone conduction: Stimulation site and coupling type dependence. Hearing Research, 2019, 378, 108-125.	2.0	32
11	Objective Assessment of Stapedotomy Surgery From Round Window Motion Measurement. Ear and Hearing, 2012, 33, e24-e31.	2.1	30
12	Contribution of the incudo-malleolar joint to middle-ear sound transmission. Hearing Research, 2015, 327, 218-226.	2.0	30
13	Performance evaluation of a novel piezoelectric subcutaneous bone conduction device. Hearing Research, 2018, 370, 94-104.	2.0	27
14	An Artificial Temporal Bone as a Training Tool for Cochlear Implantation. Otology and Neurotology, 2013, 34, 1048-1051.	1.3	25
15	A MEMS Condenser Microphone-Based Intracochlear Acoustic Receiver. IEEE Transactions on Biomedical Engineering, 2017, 64, 2431-2438.	4.2	22
16	Contribution of complex stapes motion to cochlea activation. Hearing Research, 2012, 284, 82-92.	2.0	20
17	Intracranial Pressure and Promontory Vibration With Soft Tissue Stimulation in Cadaveric Human Whole Heads. Otology and Neurotology, 2016, 37, e384-e390.	1.3	19
18	Magnitude and phase of three-dimensional (3D) velocity vector: Application to measurement of cochlear promontory motion during bone conduction sound transmission. Hearing Research, 2018, 364, 96-103.	2.0	19

Jae Hoon

#	Article	IF	CITATIONS
19	The effect of rocking stapes motions on the cochlear fluid flow and on the basilar membrane motion. Journal of the Acoustical Society of America, 2013, 134, 3749-3758.	1.1	18
20	A method to measure sound transmission via the malleus–incus complex. Hearing Research, 2016, 340, 89-98.	2.0	17
21	How Does Closure of Tympanic Membrane Perforations Affect Hearing and Middle Ear Mechanics?—An Evaluation in a Patient Cohort and Temporal Bone Models. Otology and Neurotology, 2012, 33, 371-378.	1.3	16
22	Ossiculoplasty With Total Ossicular Replacement Prosthesis and Omega Connector. Otology and Neurotology, 2011, 32, 1102-1107.	1.3	14
23	Sheep as a large animal ear model: Middle-ear ossicular velocities and intracochlear sound pressure. Hearing Research, 2017, 351, 88-97.	2.0	14
24	Assessment of a Direct Acoustic Cochlear Stimulator. Audiology and Neuro-Otology, 2012, 17, 299-308.	1.3	13
25	Errors in measurement of three-dimensional motions of the stapes using a Laser Doppler Vibrometer system. Hearing Research, 2010, 270, 4-14.	2.0	11
26	Dependence of skull surface wave propagation on stimulation sites and direction under bone conduction. Journal of the Acoustical Society of America, 2020, 147, 1985-2001.	1.1	11
27	Can an Incomplete Ossicular Discontinuity Be Predicted by Audiometric and Clinical Findings?. Otology and Neurotology, 2013, 34, 699-704.	1.3	10
28	Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor. Hearing Research, 2018, 357, 1-9.	2.0	9
29	The influence of postoperative tissue formation on sound transmission after stapes surgery. Hearing Research, 2010, 263, 38-42.	2.0	8
30	Optimal ossicular site for maximal vibration transmissions to coupled transducers. Hearing Research, 2013, 301, 137-145.	2.0	7
31	Comparison of sheep and human middle-ear ossicles: anatomy and inertial properties. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 683-700.	1.6	7
32	Contribution of the flexible incudo-malleal joint to middle-ear sound transmission under static pressure loads. Hearing Research, 2021, 406, 108272.	2.0	6
33	Proof of Concept for an Intracochlear Acoustic Receiver for Use in Acute Large Animal Experiments. Sensors, 2018, 18, 3565.	3.8	5
34	A 3-D Force and Moment Motor for Small-Scale Biomechanics Experiments. IEEE Sensors Journal, 2009, 9, 1924-1932.	4.7	3
35	THREE-DIMENSIONAL MEASUREMENTS AND ANALYSIS OF THE ISOLATED MALLEUS-INCUS COMPLEX. , 2004, , .		3
36	Influence of angular positioning of the prosthesis in stapes surgeries with a NiTiBond prosthesis: Investigation in cadaveric temporal bones. Hearing Research, 2019, 378, 149-156.	2.0	2

Jae Hoon

#	Article	IF	CITATIONS
37	Investigation of Tympanic Membrane Influences on Middle-Ear Impedance Measurements and Simulations. Computational Methods in Applied Sciences (Springer), 2020, , 3-10.	0.3	2
38	Multiphoton imaging for morphometry of the sandwich-beam structure of the human stapedial annular ligament. Hearing Research, 2019, 378, 63-74.	2.0	1
39	A New Stapes-Head Coupler for the Vibrant Soundbridge System. Audiology and Neuro-Otology, 2021, 26, 1-8.	1.3	1
40	Clinical and Microbiological Evaluation of an Extended-Wear Hearing Instrument. Audiology and Neurotology Extra, 2014, 4, 32-45.	2.0	0