List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7290672/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Variability in gene expression underlies incomplete penetrance. Nature, 2010, 463, 913-918.	13.7	607
2	Chromosome-scale selective sweeps shape Caenorhabditis elegans genomic diversity. Nature Genetics, 2012, 44, 285-290.	9.4	366
3	CeNDR, the <i>Caenorhabditis elegans</i> natural diversity resource. Nucleic Acids Research, 2017, 45, D650-D657.	6.5	287
4	Patterns of Gene Expression During Drosophila Mesoderm Development. Science, 2001, 293, 1629-1633.	6.0	254
5	A Polymorphism in <i>npr-1</i> Is a Behavioral Determinant of Pathogen Susceptibility in <i>C. elegans</i> . Science, 2009, 323, 382-384.	6.0	221
6	Bacterial Metabolism Affects the C.Âelegans Response to Cancer Chemotherapeutics. Cell, 2017, 169, 431-441.e8.	13.5	215
7	The laboratory domestication of Caenorhabditis elegans. Trends in Genetics, 2015, 31, 224-231.	2.9	183
8	A Variant in the Neuropeptide Receptor npr-1 is a Major Determinant of Caenorhabditis elegans Growth and Physiology. PLoS Genetics, 2014, 10, e1004156.	1.5	174
9	Natural Variation in a Chloride Channel Subunit Confers Avermectin Resistance in <i>C. elegans</i> . Science, 2012, 335, 574-578.	6.0	160
10	Two <i>C. elegans</i> histone methyltransferases repress <i>lin-3</i> EGF transcription to inhibit vulval development. Development (Cambridge), 2007, 134, 2991-2999.	1.2	142
11	Remarkably Divergent Regions Punctuate the Genome Assembly of the <i>Caenorhabditis elegans</i> Hawaiian Strain CB4856. Genetics, 2015, 200, 975-989.	1.2	136
12	The Genetic Basis of Natural Variation in <i>Caenorhabditis elegans</i> Telomere Length. Genetics, 2016, 204, 371-383.	1.2	117
13	A Powerful New Quantitative Genetics Platform, Combining <i>Caenorhabditis elegans</i> High-Throughput Fitness Assays with a Large Collection of Recombinant Strains. G3: Genes, Genomes, Genetics, 2015, 5, 911-920.	0.8	106
14	VCF-kit: assorted utilities for the variant call format. Bioinformatics, 2017, 33, 1581-1582.	1.8	104
15	Differential Localization and Independent Acquisition of the H3K9me2 and H3K9me3 Chromatin Modifications in the Caenorhabditis elegans Adult Germ Line. PLoS Genetics, 2010, 6, e1000830.	1.5	101
16	Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles. PLoS Pathogens, 2018, 14, e1007226.	2.1	97
17	Balancing selection maintains hyper-divergent haplotypes in Caenorhabditis elegans. Nature Ecology and Evolution, 2021, 5, 794-807.	3.4	89
18	Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. ELife, 2019, 8, .	2.8	88

#	Article	IF	CITATIONS
19	A Wild C. Elegans Strain Has Enhanced Epithelial Immunity to a Natural Microsporidian Parasite. PLoS Pathogens, 2015, 11, e1004583.	2.1	80
20	Natural variation in a single amino acid substitution underlies physiological responses to to topoisomerase II poisons. PLoS Genetics, 2017, 13, e1006891.	1.5	75
21	Scaling, Selection, and Evolutionary Dynamics of the Mitotic Spindle. Current Biology, 2015, 25, 732-740.	1.8	73
22	Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest. BMC Evolutionary Biology, 2013, 13, 10.	3.2	71
23	Long-read sequencing reveals intra-species tolerance of substantial structural variations and new subtelomere formation in <i>C. elegans</i> . Genome Research, 2019, 29, 1023-1035.	2.4	67
24	Natural variation in C. elegans arsenic toxicity is explained by differences in branched chain amino acid metabolism. ELife, 2019, 8, .	2.8	66
25	Discovery of genomic intervals that underlie nematode responses to benzimidazoles. PLoS Neglected Tropical Diseases, 2018, 12, e0006368.	1.3	63
26	C. elegans ISWI and NURF301 antagonize an Rb-like pathway in the determination of multiple cell fates. Development (Cambridge), 2006, 133, 2695-2704.	1.2	61
27	COPASutils: An R Package for Reading, Processing, and Visualizing Data from COPAS Large-Particle Flow Cytometers. PLoS ONE, 2014, 9, e111090.	1.1	54
28	Xenobiotic metabolism and transport in <i>Caenorhabditis elegans</i> . Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2021, 24, 51-94.	2.9	51
29	Copper Oxide Nanoparticles Impact Several Toxicological Endpoints and Cause Neurodegeneration in Caenorhabditis elegans. PLoS ONE, 2016, 11, e0167613.	1.1	50
30	Selection on a Subunit of the NURF Chromatin Remodeler Modifies Life History Traits in a Domesticated Strain of Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006219.	1.5	50
31	Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vectorâ€borne nematode diseases. FEBS Journal, 2016, 283, 3204-3221.	2.2	48
32	The genetic basis of natural variation in a phoretic behavior. Nature Communications, 2017, 8, 273.	5.8	48
33	Quantitative benzimidazole resistance and fitness effects of parasitic nematode beta-tubulin alleles. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 28-36.	1.4	47
34	Caenorhabditis elegans in anthelmintic research – Old model, new perspectives. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 237-248.	1.4	45
35	A Novel Gene Underlies Bleomycin-Response Variation in <i>Caenorhabditis elegans</i> . Genetics, 2019, 212, 1453-1468.	1.2	43
36	Selection and gene flow shape niche-associated variation in pheromone response. Nature Ecology and Evolution, 2019, 3, 1455-1463.	3.4	41

#	Article	IF	CITATIONS
37	Shared Genomic Regions Underlie Natural Variation in Diverse Toxin Responses. Genetics, 2018, 210, 1509-1525.	1.2	39
38	The Gene <i>scb-1</i> Underlies Variation in <i>Caenorhabditis elegans</i> Chemotherapeutic Responses. G3: Genes, Genomes, Genetics, 2020, 10, 2353-2364.	0.8	38
39	Complementary Approaches with Free-living and Parasitic Nematodes to Understanding Anthelmintic Resistance. Trends in Parasitology, 2021, 37, 240-250.	1.5	38
40	Tightly linked antagonistic-effect loci underlie polygenic phenotypic variation in <i>C. elegans</i> . Evolution Letters, 2019, 3, 462-473.	1.6	37
41	Selfing is the safest sex for Caenorhabditis tropicalis. ELife, 2021, 10, .	2.8	37
42	From QTL to gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends in Genetics, 2021, 37, 933-947.	2.9	37
43	DPL-1 DP, LIN-35 Rb and EFL-1 E2F Act With the MCD-1 Zinc-Finger Protein to Promote Programmed Cell Death in Caenorhabditis elegans. Genetics, 2007, 175, 1719-1733.	1.2	34
44	An escape-room inspired game for genetics review. Journal of Biological Education, 2021, 55, 406-417.	0.8	27
45	Correlations of Genotype with Climate Parameters Suggest <i>Caenorhabditis elegans</i> Niche Adaptations. G3: Genes, Genomes, Genetics, 2017, 7, 289-298.	0.8	26
46	Mutation Is a Sufficient and Robust Predictor of Genetic Variation for Mitotic Spindle Traits in <i>Caenorhabditis elegans</i> . Genetics, 2016, 203, 1859-1870.	1.2	25
47	Two novel loci underlie natural differences in Caenorhabditis elegans abamectin responses. PLoS Pathogens, 2021, 17, e1009297.	2.1	24
48	Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spectrum in <i>C. elegans</i> . Genome Research, 2021, 31, 1602-1613.	2.4	24
49	Natural variation in the sequestosome-related gene, sqst-5, underlies zinc homeostasis in Caenorhabditis elegans. PLoS Genetics, 2020, 16, e1008986.	1.5	24
50	Natural genetic variation as a tool for discovery in <i>Caenorhabditis</i> nematodes. Genetics, 2022, 220, .	1.2	24
51	The impact of species-wide gene expression variation on Caenorhabditis elegans complex traits. Nature Communications, 2022, 13, .	5.8	23
52	Population Selection and Sequencing of <i>Caenorhabditis elegans</i> Wild Isolates Identifies a Region on Chromosome III Affecting Starvation Resistance. G3: Genes, Genomes, Genetics, 2019, 9, 3477-3488.	0.8	21
53	Newly identified parasitic nematode beta-tubulin alleles confer resistance to benzimidazoles. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 17, 168-175.	1.4	21
54	Multiple Levels of Redundant Processes Inhibit <i>Caenorhabditis elegans</i> Vulval Cell Fates. Genetics, 2008, 179, 2001-2012.	1.2	20

#	Article	IF	CITATIONS
55	Chromosome-Level Reference Genomes for Two Strains of <i>Caenorhabditis briggsae</i> : An Improved Platform for Comparative Genomics. Genome Biology and Evolution, 2022, 14, .	1.1	20
56	Natural Variation and Genetic Determinants of <i>Caenorhabditis elegans</i> Sperm Size. Genetics, 2019, 213, 615-632.	1.2	19
57	Natural variation in a glucuronosyltransferase modulates propionate sensitivity in a C. elegans propionic acidemia model. PLoS Genetics, 2020, 16, e1008984.	1.5	18
58	Megapixel camera arrays enable high-resolution animal tracking in multiwell plates. Communications Biology, 2022, 5, 253.	2.0	18
59	Evaluating the power and limitations of genome-wide association studies in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	17
60	Natural variation in fecundity is correlated with species-wide levels of divergence in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	15
61	Natural variation in Caenorhabditis elegans responses to the anthelmintic emodepside. International Journal for Parasitology: Drugs and Drug Resistance, 2021, 16, 1-8.	1.4	14
62	Natural diversity facilitates the discovery of conserved chemotherapeutic response mechanisms. Current Opinion in Genetics and Development, 2017, 47, 41-47.	1.5	11
63	Long-Term Metabolomics Reference Material. Analytical Chemistry, 2021, 93, 9193-9199.	3.2	11
64	AÂspontaneous complex structural variant in rcan-1 increases exploratory behavior and laboratory fitness of Caenorhabditis elegans. PLoS Genetics, 2020, 16, e1008606.	1.5	9
65	easyXpress: An R package to analyze and visualize high-throughput C. elegans microscopy data generated using CellProfiler. PLoS ONE, 2021, 16, e0252000.	1.1	9
66	The distribution of mutational effects on fitness in <i>Caenorhabditis elegans</i> inferred from standing genetic variation. Genetics, 2022, 220, .	1.2	9
67	Local adaptation and spatiotemporal patterns of genetic diversity revealed by repeated sampling of <i>Caenorhabditis elegans</i> across the Hawaiian Islands. Molecular Ecology, 2022, 31, 2327-2347.	2.0	8
68	Interactions of <i>Caenorhabditis elegans</i> β-tubulins with the microtubule inhibitor and anthelmintic drug albendazole. Genetics, 2022, 221, .	1.2	8
69	Culture and Assay of Large-Scale Mixed-Stage Caenorhabditis elegans Populations. Journal of Visualized Experiments, 2021, , .	0.2	7
70	The red death meets the abdominal bristle: Polygenic mutation for susceptibility to a bacterial pathogen in <i>Caenorhabditis elegans</i> . Evolution; International Journal of Organic Evolution, 2015, 69, 508-519.	1.1	6
71	Changes in body shape implicate cuticle stretch in C. elegans growth control. Cells and Development, 2022, 170, 203780.	0.7	6
72	easyFulcrum: An R package to process and analyze ecological sampling data generated using the Fulcrum mobile application. PLoS ONE, 2021, 16, e0254293.	1.1	4

#	Article	IF	CITATIONS
73	Using population selection and sequencing to characterize natural variation of starvation resistance in Caenorhabditis elegans. ELife, 0, 11, .	2.8	4
74	The nematode Caenorhabditis elegans and the terrestrial isopod Porcellio scaber likely interact opportunistically. PLoS ONE, 2020, 15, e0235000.	1.1	2
75	The Caenorhabditis Genetics Center (CGC) and the Caenorhabditis elegans Natural Diversity Resource. , 2019, , 69-94.		2
76	The cadmium-responsive gene, , does not influence responses to exogenous zinc. MicroPublication Biology, 2020, 2020, .	0.1	1
77	The and beta-tubulin genes cannot substitute for loss of the beta-tubulin gene. MicroPublication Biology, 2021, 2021, .	0.1	1
78	Effects of telomerase overexpression in the model organism Caenorhabditis elegans. Gene, 2020, 732, 144367.	1.0	0
79	A Highly Scalable Approach to Perform Ecological Surveys of Selfing Caenorhabditis Nematodes. Journal of Visualized Experiments, 2022, , .	0.2	0
80	Title is missing!. , 2020, 16, e1008984.		0
81	Title is missing!. , 2020, 16, e1008984.		0
82	Title is missing!. , 2020, 16, e1008984.		0
83	Title is missing!. , 2020, 16, e1008984.		0
84	Title is missing!. , 2020, 16, e1008984.		0
85	Title is missing!. , 2020, 16, e1008984.		0
86	Title is missing!. , 2020, 16, e1008606.		0
87	Title is missing!. , 2020, 16, e1008606.		Ο
88	Title is missing!. , 2020, 16, e1008606.		0
89	Title is missing!. , 2020, 16, e1008606.		0
90	Title is missing!. , 2020, 16, e1008606.		0

Title is missing!. , 2020, 16, e1008606. 90

6

