

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7289960/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NEK2 Induces Drug Resistance Mainly through Activation of Efflux Drug Pumps and Is Associated with Poor Prognosis in Myeloma and Other Cancers. Cancer Cell, 2013, 23, 48-62.	16.8	232
2	Alternative splicing and cancer: a systematic review. Signal Transduction and Targeted Therapy, 2021, 6, 78.	17.1	183
3	Review on circular RNAs and new insights into their roles in cancer. Computational and Structural Biotechnology Journal, 2021, 19, 910-928.	4.1	173
4	Over-expression of CKS1B activates both MEK/ERK and JAK/STAT3 signaling pathways and promotes myeloma cell drug-resistance. Oncotarget, 2010, 1, 22-33.	1.8	101
5	Decreased Ferroportin Promotes Myeloma Cell Growth and Osteoclast Differentiation. Cancer Research, 2015, 75, 2211-2221.	0.9	82
6	Clinical characteristics and prognostic factors of adult hemophagocytic syndrome patients: a retrospective study of increasing awareness of a disease from a single-center in China. Orphanet Journal of Rare Diseases, 2015, 10, 20.	2.7	80
7	HNRNPA2B1 promotes multiple myeloma progression by increasing AKT3 expression via m6A-dependent stabilization of ILF3 mRNA. Journal of Hematology and Oncology, 2021, 14, 54.	17.0	75
8	Bruton Tyrosine Kinase Is a Therapeutic Target in Stem-like Cells from Multiple Myeloma. Cancer Research, 2015, 75, 594-604.	0.9	65
9	A Human ICAM-1 Antibody Isolated by a Function-First Approach Has Potent Macrophage-Dependent Antimyeloma Activity InÂVivo. Cancer Cell, 2013, 23, 502-515.	16.8	64
10	RARα2 expression confers myeloma stem cell features. Blood, 2013, 122, 1437-1447.	1.4	62
11	Low serum mi <scp>R</scp> â€19a expression as a novel poor prognostic indicator in multiple myeloma. International Journal of Cancer, 2015, 136, 1835-1844.	5.1	60
12	Iron metabolism and its contribution to cancer (Review). International Journal of Oncology, 2019, 54, 1143-1154.	3.3	60
13	NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma. Oncotarget, 2014, 5, 11986-11997.	1.8	54
14	Research Advances on Acupuncture Analgesia. The American Journal of Chinese Medicine, 2020, 48, 245-258.	3.8	49
15	Updated Understanding of Autoimmune Lymphoproliferative Syndrome (ALPS). Clinical Reviews in Allergy and Immunology, 2016, 50, 55-63.	6.5	48
16	α-Hederin inhibits interleukin 6-induced epithelial-to-mesenchymal transition associated with disruption of JAK2/STAT3 signaling in colon cancer cells. Biomedicine and Pharmacotherapy, 2018, 101, 107-114.	5.6	44
17	Trifolirhizin induces autophagy-dependent apoptosis in colon cancer via AMPK/mTOR signaling. Signal Transduction and Targeted Therapy, 2020, 5, 174.	17.1	38
18	Lobetyolin induces apoptosis of colon cancer cells by inhibiting glutamine metabolism. Journal of Cellular and Molecular Medicine, 2020, 24, 3359-3369.	3.6	38

Ye Yang

#	Article	IF	CITATIONS
19	Echinacoside protects against MPTP/MPP+-induced neurotoxicity via regulating autophagy pathway mediated by Sirt1. Metabolic Brain Disease, 2019, 34, 203-212.	2.9	37
20	Review: RNA-based diagnostic markers discovery and therapeutic targets development in cancer. , 2022, 234, 108123.		37
21	Peptide decoration of nanovehicles to achieve active targeting and pathology-responsive cellular uptake for bone metastasis chemotherapy. Biomaterials Science, 2014, 2, 961.	5.4	35
22	Long Non-Coding RNA MEG3 Functions as a Competing Endogenous RNA to Regulate HOXA11 Expression by Sponging miR-181a in Multiple Myeloma. Cellular Physiology and Biochemistry, 2018, 49, 87-100.	1.6	34
23	Identification and Characterization of Tumor-Initiating Cells in Multiple Myeloma. Journal of the National Cancer Institute, 2020, 112, 507-515.	6.3	33
24	CHEK1 and circCHEK1_246aa evoke chromosomal instability and induce bone lesion formation in multiple myeloma. Molecular Cancer, 2021, 20, 84.	19.2	33
25	NEDD8 Inhibition Overcomes CKS1B-Induced Drug Resistance by Upregulation of p21 in Multiple Myeloma. Clinical Cancer Research, 2015, 21, 5532-5542.	7.0	31
26	Neuroprotective Effect of Echinacoside in Subacute Mouse Model of Parkinson's Disease. BioMed Research International, 2019, 2019, 1-8.	1.9	31
27	Exploring the role of glucose‑6‑phosphate dehydrogenase in cancer (Review). Oncology Reports, 2020, 44, 2325-2336.	2.6	27
28	BUB1B and circBUB1B_544aa aggravate multiple myeloma malignancy through evoking chromosomal instability. Signal Transduction and Targeted Therapy, 2021, 6, 361.	17.1	27
29	NAT10 promotes cell proliferation by acetylating CEP170 mRNA to enhance translation efficiency in multiple myeloma. Acta Pharmaceutica Sinica B, 2022, 12, 3313-3325.	12.0	27
30	BUB1B promotes multiple myeloma cell proliferation through CDC20/CCNB axis. Medical Oncology, 2015, 32, 81.	2.5	21
31	Upregulation of FOXM1 leads to diminished drug sensitivity in myeloma. BMC Cancer, 2018, 18, 1152.	2.6	21
32	Chromosomal instability and acquired drug resistance in multiple myeloma. Oncotarget, 2017, 8, 78234-78244.	1.8	21
33	YTHDF2 promotes multiple myeloma cell proliferation via STAT5A/MAP2K2/p-ERK axis. Oncogene, 2022, 41, 1482-1491.	5.9	21
34	A novel protein encoded by circHNRNPU promotes multiple myeloma progression by regulating the bone marrow microenvironment and alternative splicing. Journal of Experimental and Clinical Cancer Research, 2022, 41, 85.	8.6	21
35	Deciphering bacterial community changes in zucker diabetic fatty rats based on 16S rRNA gene sequences analysis. Oncotarget, 2016, 7, 48941-48952.	1.8	19
36	The component formula of <i>Salvia miltiorrhiza</i> and <i>Panax</i> ginseng induces apoptosis and inhibits cell invasion and migration through targeting PTEN in lung cancer cells. Oncotarget, 2017, 8, 101599-101613.	1.8	19

YE YANG

#	Article	IF	CITATIONS
37	The impact of the bone marrow microenvironment on multiple myeloma (Review). Oncology Reports, 2019, 42, 1272-1282.	2.6	18
38	A brief guide to good practices in pharmacological experiments: Western blotting. Acta Pharmacologica Sinica, 2021, 42, 1015-1017.	6.1	18
39	Nek2 Is a Novel Regulator of B Cell Development and Immunological Response. BioMed Research International, 2014, 2014, 1-11.	1.9	17
40	4′-hydroxywogonin inhibits colorectal cancer angiogenesis by disrupting PI3K/AKT signaling. Chemico-Biological Interactions, 2018, 296, 26-33.	4.0	17
41	Dihydroartemisinin Induces Growth Arrest and Overcomes Dexamethasone Resistance in Multiple Myeloma. Frontiers in Oncology, 2020, 10, 767.	2.8	16
42	Upregulation of FOXM1 in a subset of relapsed myeloma results in poor outcome. Blood Cancer Journal, 2018, 8, 22.	6.2	15
43	<p>Bioactive Compounds from Abelmoschus manihot L. Alleviate the Progression of Multiple Myeloma in Mouse Model and Improve Bone Marrow Microenvironment</p> . OncoTargets and Therapy, 2020, Volume 13, 959-973.	2.0	15
44	OCF can repress tumor metastasis by inhibiting epithelial–mesenchymal transition involved in PTEN/PI3K/AKT pathway in lung cancer cells. PLoS ONE, 2017, 12, e0174021.	2.5	14
45	Integration of organ metabolomics and proteomics in exploring the blood enriching mechanism of Danggui Buxue Decoction in hemorrhagic anemia rats. Journal of Ethnopharmacology, 2020, 261, 113000.	4.1	14
46	MTDH is an oncogene in multiple myeloma, which is suppressed by Bortezomib treatment. Oncotarget, 2016, 7, 4559-4569.	1.8	14
47	AHSA1 is a promising therapeutic target for cellular proliferation and proteasome inhibitor resistance in multiple myeloma. Journal of Experimental and Clinical Cancer Research, 2022, 41, 11.	8.6	14
48	Suppression of steroid 5α-reductase type I promotes cellular apoptosis and autophagy via PI3K/Akt/mTOR pathway in multiple myeloma. Cell Death and Disease, 2021, 12, 206.	6.3	13
49	Targeting MK2 Is a Novel Approach to Interfere in Multiple Myeloma. Frontiers in Oncology, 2019, 9, 722.	2.8	12
50	Parathyroid hormone receptor mediates the anti-myeloma effect of proteasome inhibitors. Bone, 2014, 61, 39-43.	2.9	11
51	mathvariant="bold">î±-Hederin Arrests Cell Cycle at G2/M Checkpoint and Promotes Mitochondrial Apoptosis by Blocking Nuclear Factor- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mtext mathvariant="bold">ie/mml:mtext></mml:mtext </mml:mrow>B Signaling in Colon Cancer Cells</mml:math 	1.9	11
52	Steroid 51±-Reductase Type I Induces Cell Viability and Migration via Nuclear Factor-I®B/Vascular Endothelial Growth Factor Signaling Pathway in Colorectal Cancer. Frontiers in Oncology, 2020, 10, 1501.	2.8	11
53	Modified Pulsatillae decoction inhibits DSS-induced ulcerative colitis in vitro and in vivo via IL-6/STAT3 pathway. BMC Complementary Medicine and Therapies, 2020, 20, 179.	2.7	11
54	CASC21, a FOXP1 induced long non-coding RNA, promotes colorectal cancer growth by regulating CDK6. Aging, 2020, 12, 12086-12106.	3.1	11

YE YANG

#	Article	IF	CITATIONS
55	Germline Risk Contribution to Genomic Instability in Multiple Myeloma. Frontiers in Genetics, 2019, 10, 424.	2.3	10
56	Splicing factor arginine/serineâ€rich 8 promotes multiple myeloma malignancy and bone lesion through alternative splicing of CACYBP and exosomeâ€based cellular communication. Clinical and Translational Medicine, 2022, 12, e684.	4.0	9
57	<p>Coexistence Of A Huge Venous Thromboembolism And Bleeding Tendency In Cytokine Release Syndrome During CAR-T Therapy</p> . OncoTargets and Therapy, 2019, Volume 12, 8955-8960.	2.0	8
58	CAR-T therapy alters synthesis of platelet-activating factor in multiple myeloma patients. Journal of Hematology and Oncology, 2021, 14, 90.	17.0	8
59	Lycium barbarum polysaccharides attenuate rat anti-Thy-1 glomerulonephritis through mediating pyruvate dehydrogenase. Biomedicine and Pharmacotherapy, 2019, 116, 109020.	5.6	7
60	RFWD2 induces cellular proliferation and selective proteasome inhibitor resistance by mediating P27 ubiquitination in multiple myeloma. Leukemia, 2021, 35, 1803-1807.	7.2	7
61	BTK suppresses myeloma cellular senescence through activating AKT/P27/Rb signaling. Oncotarget, 2017, 8, 56858-56867.	1.8	7
62	MK2 is a therapeutic target for high-risk multiple myeloma. Haematologica, 2021, 106, 1774-1777.	3.5	6
63	Low molecular weight heparin (nadroparin) improves placental permeability in rats with gestational diabetes mellitus via reduction of tight junction factors. Molecular Medicine Reports, 2019, 21, 623-630.	2.4	5
64	Anti-tumor activity of a novel proteasome inhibitor D395 against multiple myeloma and its lower cardiotoxicity compared with carfilzomib. Cell Death and Disease, 2021, 12, 429.	6.3	5
65	BTK induces CAM-DR through regulation of CXCR4 degradation in multiple myeloma. American Journal of Translational Research (discontinued), 2019, 11, 4139-4150.	0.0	4
66	Effect of <i>Wenshen-Yanggan</i> Decoction on Movement Disorder and Substantia Nigra Dopaminergic Neurons in Mice with Chronic Parkinson's Disease. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-9.	1.2	3
67	Targeting RFWD2 as an Effective Strategy to Inhibit Cellular Proliferation and Overcome Drug Resistance to Proteasome Inhibitor in Multiple Myeloma. Frontiers in Cell and Developmental Biology, 2021, 9, 675939.	3.7	3
68	Elevated Expression Of CKS1B Inhibits Senescence Thorough Enhanced Degradation Of p21 In Multiple Myeloma. Blood, 2013, 122, 1882-1882.	1.4	3
69	Acupuncture Synergized With Bortezomib Improves Survival of Multiple Myeloma Mice via Decreasing Metabolic Ornithine. Frontiers in Oncology, 2021, 11, 779562.	2.8	3
70	<i>In vitro</i> and <i>in vivo</i> efficacy of the novel oral proteasome inhibitor NNU546 in multiple myeloma. Aging, 2020, 12, 22949-22974.	3.1	3
71	Rh <scp>PDCD</scp> 5 combined with dexamethasone increases antitumor activity in multiple myeloma partially via inhibiting the Wnt signalling pathway. Clinical and Experimental Pharmacology and Physiology, 2018, 45, 140-145.	1.9	2
72	A subset of CD20 ⁺ MM patients without the t(11;14) are associated with poor prognosis and a link to aberrant expression of Wnt signaling. Hematological Oncology, 2014, 32, 215-217.	1.7	1

Ye Yang

#	Article	IF	CITATIONS
73	Coexistence of a Huge Venous Thromboembolism and Bleeding Tendency in Cytokine Release Syndrome during CAR-T Therapy. Blood, 2019, 134, 5590-5590.	1.4	1
74	Phase I Exploratory Study of IV Formulation of Panobinostat in Combination with Bortezomib in Relapsed/Refractory Multiple Myeloma Patients: Effect On Serum PTH and Gene Expression Profiling (GEP) Studies. Blood, 2012, 120, 4073-4073.	1.4	1
75	Targeting BTK As a Treatment For Multiple Myeloma Stem Cells. Blood, 2013, 122, 271-271.	1.4	1
76	FOXM1, CDK6 and Rb Dependent Drug Resistance and Senescence in Myeloma. Blood, 2016, 128, 4456-4456.	1.4	1
77	Targeting Myeloma Stem Cells through Simultaneous Inhibition of Wnt and Hedgehog (Hh) Signaling Pathways. Blood, 2010, 116, 615-615.	1.4	1
78	Hypermethylation of TAp73 Suppresses ABL1-Involved DNA Damage Response in Multiple Myeloma. Blood, 2014, 124, 3374-3374.	1.4	1
79	and efficacy of the novel oral proteasome inhibitor NNU546 in multiple myeloma. Aging, 2020, 12, 22949-22974.	3.1	1
80	Inhibition of RARα2 or Its Downstream Signaling Pathways Decreases Drug Resistance in Myeloma. Blood, 2011, 118, 989-989.	1.4	0
81	The Effect of ICAM-1 Antibody Therapy in the SCID-Hu Mouse Model Using Primary Myeloma Cells. Blood, 2011, 118, 2914-2914.	1.4	0
82	Decreased FPN1 in Myeloma Promotes Malignant Cell Growth and Osteoclast Differentiation. Blood, 2014, 124, 2017-2017.	1.4	0
83	MK2 Is a Therapeutic Target for High-Risk Multiple Myeloma. Blood, 2016, 128, 5612-5612.	1.4	0
84	The component formula of Salvia miltiorrhiza and Panax ginseng induces apoptosis and inhibits cell invasion and migration through targeting PTEN in lung cancer cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-9-4.	0.0	0
85	RFWD2 Induces Cellular Proliferation and Proteasome Inhibitor Resistance By Mediating p27 Ubiqutinaiton in Multiple Myeloma. Blood, 2019, 134, 3068-3068.	1.4	0
86	The Efficacy of a Novel Oral Proteasome Inhibitor NNU546 in Multiple Myeloma. Blood, 2019, 134, 5586-5586.	1.4	0
87	The role of Wnt/β-catenin signaling pathway in the pathogenesis and treatment of multiple myeloma (review). American Journal of Translational Research (discontinued), 2021, 13, 9932-9949.	0.0	0
88	CHEK1 and circCHEK1_246aa Promote Multiple Myeloma Malignancy By Evoking Chromosomal Instability and Bone Lesion. Blood, 2020, 136, 9-10.	1.4	0