
Hitoshi Takagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7289811/publications.pdf Version: 2024-02-01

ΗΙΤΟSΗΙ ΤΛΚΛΟΙ

#	Article	IF	CITATIONS
1	Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 2016, 90, 589-597.	7.6	278
2	Tensile and flexural properties of polylactic acid-based hybrid green composites reinforced by kenaf, bamboo and coir fibers. Industrial Crops and Products, 2016, 94, 562-573.	5.2	254
3	Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites Part A: Applied Science and Manufacturing, 2014, 63, 76-84.	7.6	248
4	Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products, 2015, 65, 27-35.	5.2	177
5	Effect of Fiber Length on Mechanical Properties of "Green" Composites Using a Starch-Based Resin and Short Bamboo Fibers. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2004, 47, 551-555.	0.4	156
6	Effects of processing conditions on flexural properties of cellulose nanofiber reinforced "green― composites. Composites Part A: Applied Science and Manufacturing, 2008, 39, 685-689.	7.6	154
7	Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Industrial Crops and Products, 2013, 43, 757-761.	5.2	135
8	Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Composites Part B: Engineering, 2016, 84, 9-16.	12.0	101
9	Thermal conductivity of PLA-bamboo fiber composites. Advanced Composite Materials, 2007, 16, 377-384.	1.9	93
10	Effect of physicochemical structure of natural fiber on transverse thermal conductivity of unidirectional abaca/bamboo fiber composites. Composites Part A: Applied Science and Manufacturing, 2012, 43, 1234-1241.	7.6	82
11	Fabrication and applications of cellulose nanoparticleâ€based polymer composites. Polymer Engineering and Science, 2013, 53, 1-8.	3.1	77
12	Effect of lumen size on the effective transverse thermal conductivity of unidirectional natural fiber composites. Composites Science and Technology, 2012, 72, 633-639.	7.8	76
13	An overview on the cellulose based conducting composites. Composites Part B: Engineering, 2012, 43, 2822-2826.	12.0	65
14	Effect of chemical treatments on transverse thermal conductivity of unidirectional abaca fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 2014, 66, 227-236.	7.6	51
15	Evaluation of transverse thermal conductivity of Manila hemp fiber in solid region using theoretical method and finite element method. Materials & Design, 2011, 32, 4586-4589.	5.1	41
16	Review of Functional Properties of Natural Fiber-Reinforced Polymer Composites: Thermal Insulation, Biodegradation and Vibration Damping Properties. Advanced Composite Materials, 2019, 28, 525-543.	1.9	41
17	Multi-response analysis in the material characterisation of electrospun poly (lactic acid)/halloysite nanotube composite fibres based on Taguchi design of experiments: fibre diameter, non-intercalation and nucleation effects. Applied Physics A: Materials Science and Processing, 2013, 112, 747-757.	2.3	36
18	Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem. Composites Part A: Applied Science and Manufacturing, 2013, 45, 14-22.	7.6	36

#	Article	IF	CITATIONS
19	Sulfuric acid treatment of halloysite nanoclay to improve the mechanical properties of PVA/halloysite transparent composite films. Composite Interfaces, 2014, 21, 319-327.	2.3	32
20	Anisotropic thermal conductivity of unidirectional natural abaca fiber composites as a function of lumen and cell wall structure. Composite Structures, 2014, 108, 987-991.	5.8	30
21	Extraction of cellulose nanofiber from waste papers and application to reinforcement in biodegradable composites. Journal of Reinforced Plastics and Composites, 2013, 32, 1542-1546.	3.1	29
22	Bamboo fiber polypropylene composites: Effect of fiber treatment and nano clay on mechanical and thermal properties. Journal of Vinyl and Additive Technology, 2015, 21, 253-258.	3.4	28
23	Cellulose nanofiber aerogel production and applications. Journal of Reinforced Plastics and Composites, 2013, 32, 1547-1552.	3.1	27
24	4. ã,°ãfªãf¼ãf³ã,³ãf³ãfã,ãffãfãëãã®ç"ç©¶ã®æ—°å±•é—‹. Zairyo/Journal of the Society of Materials Science, J	ap a ng 200	6, 5 5, 438-44
25	The potential use of electrospun polylactic acid nanofibers as alternative reinforcements in an epoxy composite system. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 618-623.	2.1	23
26	Polylactic Acid Reinforced with Mixed Cellulose and Chitin Nanofibers—Effect of Mixture Ratio on the Mechanical Properties of Composites. Journal of Composites Science, 2018, 2, 36.	3.0	22
27	The Manufacture and Mechanical Properties of Composite Boards Made from Starch-Based Biodegradable Plastic and Bamboo Powder. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 357-361.	0.2	20
28	Effect of surface treatments on the mechanical properties of natural fiber textile composites made by VaRTM method. Composite Interfaces, 2014, 21, 329-336.	2.3	20
29	Preparation and properties of celluloseâ€based nano composites of clay and polypropylene. Journal of Applied Polymer Science, 2012, 125, E651.	2.6	18
30	Cellulose nanofiber extraction from grass by a modified kitchen blender. Modern Physics Letters B, 2015, 29, 1540039.	1.9	18
31	Mechanical Properties of Heat-Treated Natural Fibers Zairyo/Journal of the Society of Materials Science, Japan, 2002, 51, 1164-1168.	0.2	16
32	SELF HEALING POTENTIAL OF GREEN NANOCOMPOSITES FROM CRYSTALLINE CELLULOSE. International Journal of Modern Physics B, 2011, 25, 4216-4219.	2.0	16
33	Flexural properties of cellulose nanofibre reinforced green composites. Composites Part B: Engineering, 2014, 58, 418-421.	12.0	16
34	Heat Barrier Properties of Green Composites. Journal of Biobased Materials and Bioenergy, 2012, 6, 470-474.	0.3	16
35	Tensile Properties of Manila Hemp Fabric Reinforced Cross-Ply "Green" Composites. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 916-921.	0.2	13
36	The Mechanical Properties of Bamboo Fibers Prepared by Steam-Explosion Method. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 353-356.	0.2	13

#	Article	IF	CITATIONS
37	Photo-electrochemical Deposition of Platinum on TiO2with Resolution of Twenty Nanometers using a Mask Elaborated with Electron-Beam Lithography. Japanese Journal of Applied Physics, 2001, 40, 4246-4251.	1.5	12
38	Modified thermal resistance networks model for transverse thermal conductivity of unidirectional fiber composite. Composites Communications, 2017, 6, 52-58.	6.3	12
39	FLEXURAL STRENGTH AND IMPACT ENERGY OF MICROFIBRIL BAMBOO FIBER REINFORCED ENVIRONMENT-FRIENDLY COMPOSITES BASED ON POLY-LACTIC ACID RESIN. International Journal of Modern Physics B, 2011, 25, 4195-4198.	2.0	10
40	Mechanical Behavior of Starch-Based "Green" Composites Reinforced by Short MAO Fibers. Proceedings of the 1992 Annual Meeting of JSME/MMD, 2002, 2002, 347-348.	0.0	9
41	Cellulose Nano-Fibers from Waste Newspaper. Journal of Biobased Materials and Bioenergy, 2012, 6, 115-118.	0.3	8
42	Characterization of "Green―Composites Reinforced by Cellulose Nanofibers. Key Engineering Materials, 2007, 334-335, 389-392.	0.4	7
43	Influence of Alkali Concentration on Morphology and Tensile Properties of Abaca Fibers. Advanced Materials Research, 0, 1110, 302-305.	0.3	7
44	Two-Directional TiNi Shape Memory Alloy Film. Advanced Engineering Materials, 2003, 5, 732-735.	3.5	6
45	Biodegradation Behavior of Unidirectional Fiber-Reinforced "Green" Composites. Zairyo/Journal of the Society of Materials Science, Japan, 2004, 53, 454-458.	0.2	6
46	Effect of Molding Conditions on Mechanical Properties of Binderless Bamboo Fiber Green Composite. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2008, 74, 84-89.	0.2	6
47	FLEXURAL PROPERTIES OF INJECTION-MOLDED BAMBOO/PBS COMPOSITES. International Journal of Modern Physics B, 2010, 24, 2838-2843.	2.0	6
48	Effect of Heat-Treatment on Mechanical Properties of Biodegradable Composites Reinforced by Bamboo Fibers and Manila Hemp Fibers. Zairyo/Journal of the Society of Materials Science, Japan, 2004, 53, 673-677.	0.2	5
49	Mechanical properties of urethane diacrylate/bamboo powder composite fabricated by rapid prototyping system. Rapid Prototyping Journal, 2016, 22, 676-683.	3.2	5
50	A Study of Dynamic Mass Damper with Shape Memory Alloy (Modelling for Hysteretic Damping). Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2005, 71, 2863-2869.	0.2	4
51	Mechanical and Biodegradation Behavior of Natural Fiber Composites. Advanced Materials Research, 2010, 123-125, 1163-1166.	0.3	4
52	Strength Properties of Cellulose Nanofiber Green Composites. Key Engineering Materials, 2011, 462-463, 576-581.	0.4	4
53	Mechanical Characterization of Bamboo Fiber-Reinforced Green Composites. Key Engineering Materials, 0, 577-578, 81-84.	0.4	4
54	Mechanical properties of heat-treated cellulose nanofiber-reinforced polyvinyl alcohol nanocomposite. Journal of Composite Materials, 2017, 51, 1971-1977.	2.4	4

#	Article	IF	CITATIONS
55	Nanosized nickel decorated sisal fibers with tailored aggregation structures for catalysis reduction of toxic aromatic compounds. Industrial Crops and Products, 2018, 119, 226-236.	5.2	4
56	The Processing and Mechanical Performance of Cellulose Nanofiber-based Composites. International Journal of Ocean System Engineering, 2011, 1, 180-184.	0.3	4
57	Track/vehicle system identification by a revised group method of data handling (GMDH). International Journal of Systems Science, 1985, 16, 131-144.	5.5	3
58	Microstructure and Hardness of Ni-NiO Composites Prepared by Powder Metallurgy Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1995, 61, 1933-1939.	0.2	3
59	Mechanical Properties of "Green―Composites Made from Starch-Based Biodegradable Resin and Bamboo Powder. , 2004, , 33-38.		3
60	Strength and Fracture Behavior of Abaca Green Composites. Advanced Materials Research, 2011, 275, 247-250.	0.3	3
61	Effect of Lumen Size on Transverse Thermal Conductivity of Unidirectional Natural Fiber-Polymer Composite via Finite Element Method. Materials Science Forum, 0, 675-677, 431-434.	0.3	3
62	The characteristics of unidirectional solidified Ni-Al-Mo alloys. Materialwissenschaft Und Werkstofftechnik, 2012, 43, 416-420.	0.9	3
63	Effect of Acid Treatment on Mechanical Performance of Polyvinyl Alcohol/Halloysite Nanocomposites. Key Engineering Materials, 0, 627, 113-116.	0.4	3
64	Dispersion of Nanocellulose (NC) in Polypropylene (PP) and Polyethylene (PE) Matrix. , 2015, , 179-189.		3
65	Influence of Alkali Treatment on Mechanical Properties of Poly Lactic Acid Bamboo Fiber Green Composites. Advanced Materials Research, 0, 1110, 56-59.	0.3	3
66	Easy cellulose nanofiber extraction from residue of agricultural crops. International Journal of Modern Physics B, 2018, 32, 1840080.	2.0	3
67	Fabrication of strong macrofibers from plant fiber bundles. International Journal of Modern Physics B, 2021, 35, 2140005.	2.0	3
68	Discontinuous Yielding and Acoustic Emission in Al-Li-Cu-Mg-Zr Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1996, 60, 809-815.	0.4	3
69	Development of High-Strength Cross-Ply "Green" Composites. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 857-862.	0.2	3
70	Mechanical Properties of Binder-Free Green Composite Using Bamboo Fibers. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 362-367.	0.2	3
71	Enhancement in Mechanical Properties of Bamboo by Press Forming. Materials Science Forum, 0, 675-677, 647-650.	0.3	2
72	Fiber Orientation Control by Stretching in Cellulose Nanofiber Green Composites. Key Engineering Materials, 0, 754, 135-138.	0.4	2

#	Article	IF	CITATIONS
73	Effect of mixing ratio on mechanical properties of mixture of chitin nanofibers and microfibrillated cellulose reinforced PVA hybrid nanocomposites. Materials Express, 2021, 11, 1523-1533.	0.5	2
74	Enhanced Mechanical Properties of Press-Formed Japanese Timber Bamboo. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 461-466.	0.2	2
75	Effect of Aging on Acoustic Emission Behaviour During Tensile Deformation of an Al-Li-Cu-Mg-Zr Alloy. JSME International Journal, Series 1: Solid Mechanics, Strength of Materials, 1990, 33, 362-366.	0.2	1
76	Dislocation Creep and Substructure of Ni-NiO Alloy Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1991, 57, 2422-2426.	0.2	1
77	Effect of NiO Content on Mechanical Properties of Ni-NiO Composites Prepared by Powder Metallurgy Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1996, 62, 299-305.	0.2	1
78	Effects of Thermal Shock on Mechanical Properties of Bamboo/PBS Green Composites. Advanced Materials Research, 2010, 123-125, 1135-1138.	0.3	1
79	Mechanical Behavior of Environment-Friendly Green Composites Fabricated with Starch-Based Resin and Short MAO Fibers. Key Engineering Materials, 0, 452-453, 313-316.	0.4	1
80	Study on Fracture Behaviors of Injection-Molded Bamboo Fiber/PBS Composites. Key Engineering Materials, 0, 452-453, 229-232.	0.4	1
81	Recycling Technology for Grinding Swarf: Application to Iron Powder for Disposable Body Warmer. Applied Mechanics and Materials, 2011, 121-126, 1535-1539.	0.2	1
82	BAMBOO FIBER REINFORCED BINDERLESS GREEN COMPOSITES FROM STEAM-EXPLODED BAMBOO POWDER. International Journal of Modern Physics Conference Series, 2012, 06, 739-744.	0.7	1
83	EFFECT OF MOLDING CONDITIONS ON ADHESIVE PROPERTY OF LAMINATED BAMBOO COMPOSITES. International Journal of Modern Physics Conference Series, 2012, 06, 768-773.	0.7	1
84	Shear Strength Evaluation of Laminated Binderless Bamboo Composites. Materials Science Forum, 2013, 750, 108-111.	0.3	1
85	Development of green nanocomposites reinforced by cellulose nanofibers extracted from paper sludge. Modern Physics Letters B, 2015, 29, 1540025.	1.9	1
86	Thermal and mechanical properties of copper/photopolymer composite. Rapid Prototyping Journal, 2016, 22, 684-690.	3.2	1
87	Current Status and Future Prospects of Biocomposites. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 881-886.	0.2	1
88	STRUCTURAL MODIFICATION OF CELLULOSE NANOCOMPOSITES BY STRETCHING. , 2017, , .		1
89	Effect of aging on the acoustic emission behaviour during tensile deformation of a Al-Li-Cu-Mg-Zr alloy Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1989, 55, 1063-1066.	0.2	0
90	Fatigue crack initation and growth of Cu-Al-Ni shape-memory alloys Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1990, 56, 2369-2373.	0.2	0

#	Article	IF	CITATIONS
91	Creep rupture behavior in particle-strengthened Ni-NiO eutectic alloys Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1990, 56, 1417-1420.	0.2	0
92	Mechanical Properties and AE Behavior of Particle-Dispersed Nickel-Base Alloys Prepared by Powder Metallurgy Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1993, 59, 1313-1318.	0.2	0
93	Acoustic emission behavior during tensile deformation of Ni3Al intermetallic compound. Intermetallics, 1998, 6, 1-5.	3.9	0
94	Strength and Fracture of Unidirectional Green Composites Reinforced by Hemp Fiber. Key Engineering Materials, 0, 417-418, 89-92.	0.4	0
95	Fracture and Damage Characterization of Natural Fiber Composites. Key Engineering Materials, 2012, 525-526, 65-68.	0.4	0
96	Evaluation of Mechanical Property for JFRP (Jute Fiber Reinforced Plastic). Journal of Biobased Materials and Bioenergy, 2013, 7, 477-480.	0.3	0
97	Enhanced Functional Properties of Natural Fiber-Reinforced Composites. Advanced Materials Research, 0, 845, 306-310.	0.3	0
98	Fabrication and Performance Evaluation of Cellulose Nanofiber/PVA Composite Films. Advanced Materials Research, 0, 1110, 40-43.	0.3	0
99	Preparation and Characterization of Halloysite Nanocomposites by Rapid Prototyping Technology. Key Engineering Materials, 0, 665, 61-64.	0.4	0
100	Development and characterization of thermoset green composites reinforced by unidirectional abaca fibers. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230, 934-938.	1.1	0
101	Powder forming for ground chips of bearing steel. The Proceedings of the JSME Annual Meeting, 2000, 2000.3, 457-458.	0.0	0
102	High Temperature Strength of Structure-Controlled Ni-Al-Mo In-Situ Composites. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 838-842.	0.2	0
103	Sintering for Grinding Swarf of Bearing Steel by Pulsed Electric Current Sintering. Zairyo/Journal of the Society of Materials Science, Japan, 2003, 52, 863-866.	0.2	0
104	715 A Design Method of Semi Active Mass Damper with Super Elasticity Materials. The Proceedings of Conference of Chugoku-Shikoku Branch, 2005, 2005.43, 265-266.	0.0	0
105	Present States and Technical Issues on Recycling of Grinding Swarf. Journal of the Japan Society for Precision Engineering, 2006, 72, 551-554.	0.1	0
106	Materials Technology in Bio-Based Composites. Seikei-Kakou, 2012, 24, 449-454.	0.0	0
107	Effect of microstructure on multifunctional properties of natural fiber composites. , 0, , .		0