
Daniel Mertens

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7289557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Clonal evolution in chronic lymphocytic leukemia is scant in relapsed but accelerated in refractory cases after chemo(immune) therapy. Haematologica, 2022, 107, 604-614.	1.7	11
2	Evaluation of vecabrutinib as a model for noncovalent BTK/ITK inhibition for treatment of chronic lymphocytic leukemia. Blood, 2022, 139, 859-875.	0.6	16
3	Modeling the Bâ€cell receptor signaling on single cell level reveals a stable network circuit topology between nonâ€malignant B cells and chronic lymphocytic leukemia cells and between untreated cells and cells treated with kinase inhibitors. International Journal of Cancer, 2022, , .	2.3	0
4	Hydroxylation of the NOTCH1 intracellular domain regulates Notch signaling dynamics. Cell Death and Disease, 2022, 13, .	2.7	5
5	Triggering T-cell activity in CLL. Blood, 2021, 137, 150-151.	0.6	1
6	Integrative prognostic models predict long-term survival after immunochemotherapy in chronic lymphocytic leukemia patients. Haematologica, 2021, , .	1.7	2
7	Discovery of Candidate DNA Methylation Cancer Driver Genes. Cancer Discovery, 2021, 11, 2266-2281.	7.7	42
8	Multi-platform profiling characterizes molecular subgroups and resistance networks in chronic lymphocytic leukemia. Nature Communications, 2021, 12, 5395.	5.8	15
9	Oxidative stress as candidate therapeutic target to overcome microenvironmental protection of CLL. Leukemia, 2020, 34, 115-127.	3.3	23
10	Genomic alterations in high-risk chronic lymphocytic leukemia frequently affect cell cycle key regulators and NOTCH1-regulated transcription. Haematologica, 2020, 105, 1379-1390.	1.7	24
11	DNA methylation of chronic lymphocytic leukemia with differential response to chemotherapy. Scientific Data, 2020, 7, 133.	2.4	6
12	Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood, 2020, 135, 2402-2412.	0.6	83
13	Methylome-based cell-of-origin modeling (Methyl-COOM) identifies aberrant expression of immune regulatory molecules in CLL. Genome Medicine, 2020, 12, 29.	3.6	15
14	HDAC3 functions as a positive regulator in Notch signal transduction. Nucleic Acids Research, 2020, 48, 3496-3512.	6.5	31
15	Prognostic and predictive role of gene mutations in chronic lymphocytic leukemia: results from the pivotal phase III study COMPLEMENT1. Haematologica, 2020, 105, 2440-2447.	1.7	31
16	Multiplatform Profiling Characterizes Functional Networks in Genomically Stable and Instable Chronic Lymphocytic Leukemia. Blood, 2020, 136, 12-13.	0.6	0
17	Linking aberrant chromatin features in chronic lymphocytic leukemia to transcription factor networks. Molecular Systems Biology, 2019, 15, e8339.	3.2	39
18	Venetoclax resistance and acquired <i>BCL2</i> mutations in chronic lymphocytic leukemia. Haematologica, 2019, 104, e434-e437.	1.7	144

#	Article	IF	CITATIONS
19	ICF1R as druggable target mediating PI3K-δ inhibitor resistance in a murine model of chronic lymphocytic leukemia. Blood, 2019, 134, 534-547.	0.6	51
20	Short telomeres are associated with inferior outcome, genomic complexity, and clonal evolution in chronic lymphocytic leukemia. Leukemia, 2019, 33, 2183-2194.	3.3	19
21	From Biology to Therapy: The CLL Success Story. HemaSphere, 2019, 3, e175.	1.2	55
22	FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood, 2019, 133, 830-839.	0.6	56
23	Comprehensive micro <scp>RNA</scp> expression profiling in cerebrospinal fluid distinguishes between neurological disease classes. Neuropathology and Applied Neurobiology, 2019, 45, 318-323.	1.8	1
24	Blocking distinct interactions between Glioblastoma cells and their tissue microenvironment: A novel multi-targeted therapeutic approach. Scientific Reports, 2018, 8, 5527.	1.6	15
25	<i>NFATC1</i> activation by <scp>DNA</scp> hypomethylation in chronic lymphocytic leukemia correlates with clinical staging and can be inhibited by ibrutinib. International Journal of Cancer, 2018, 142, 322-333.	2.3	33
26	NOTCH1 Signaling Is Activated in CLL By Mutations of FBXW7 and Low Expression of USP28 at 11q23. Blood, 2018, 132, 946-946.	0.6	1
27	Ibrutinib-resistant CLL: unwanted and unwonted!. Blood, 2017, 129, 1407-1409.	0.6	5
28	Rapid detection of ATM/p53 function with p27Kip FACS analysis: a novel diagnostic tool for chronic lympocytic leukemia?. Leukemia and Lymphoma, 2017, 58, 6-7.	0.6	2
29	The Phospholipase Cγ2 Mutants R665W and L845F Identified in Ibrutinib-resistant Chronic Lymphocytic Leukemia Patients Are Hypersensitive to the Rho GTPase Rac2 Protein. Journal of Biological Chemistry, 2016, 291, 22136-22148.	1.6	42
30	Kruppel-like factor 4 (KLF4) inactivation in chronic lymphocytic leukemia correlates with promoter DNA-methylation and can be reversed by inhibition of NOTCH signaling. Haematologica, 2016, 101, e249-e253.	1.7	26
31	DNA methylation dynamics during B cell maturation underlie a continuum of disease phenotypes in chronic lymphocytic leukemia. Nature Genetics, 2016, 48, 253-264.	9.4	254
32	Genomic Features: Impact on Pathogenesis and Treatment of Chronic Lymphocytic Leukemia. Oncology Research and Treatment, 2016, 39, 34-40.	0.8	5
33	In Vivo modeling of Resistance to PI3KδInhibitor Treatment Using EµTCL1-Tg Tumor Transfer Model. Blood, 2016, 128, 190-190.	0.6	7
34	Targeting inhibitor of apoptosis proteins by <scp>S</scp> mac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia. International Journal of Cancer, 2015, 137, 2959-2970.	2.3	17
35	Epigenetic silencing of miR-708 enhances NF-κB signaling in chronic lymphocytic leukemia. International Journal of Cancer, 2015, 137, 1352-1361.	2.3	52
36	Mutations driving CLL and their evolution in progression and relapse. Nature, 2015, 526, 525-530.	13.7	868

#	Article	IF	CITATIONS
37	Loss of cooperativity of secreted CD40L and increased dose-response to IL4 on CLL cell viability correlates with enhanced activation of NF-kB and STAT6. International Journal of Cancer, 2015, 136, 65-73.	2.3	11
38	Progressive Epigenetic Programming during B Cell Maturation Is Reflected in a Continuum of Epigenetic Disease Phenotypes in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 2436-2436.	0.6	1
39	Quantitative Clonal Dynamics Define Mechanisms of CLL Evolution in Response to Combination Chemotherapy. Blood, 2015, 126, 362-362.	0.6	4
40	Eµ-TCL1mTerc -/- Mouse Model for Telomere Dysfunction in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 1724-1724.	0.6	0
41	Microenvironmental Stromal Cells Rescue CLL Cells from Apoptosis Via Hypoxia That Can be Targeted Therapeutically. Blood, 2015, 126, 4140-4140.	0.6	0
42	Defective DROSHA processing contributes to downregulation of MiR-15/-16 in chronic lymphocytic leukemia. Leukemia, 2014, 28, 98-107.	3.3	64
43	Prognostic and Predictive Factors in Patients With Chronic Lymphocytic Leukemia: Relevant in the Era of Novel Treatment Approaches?. Journal of Clinical Oncology, 2014, 32, 869-872.	0.8	45
44	Evolution of DNA Methylation Is Linked to Genetic Aberrations in Chronic Lymphocytic Leukemia. Cancer Discovery, 2014, 4, 348-361.	7.7	135
45	Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial. Blood, 2014, 123, 3247-3254.	0.6	428
46	In Vivo Processing Assay Based on a Dual-Luciferase Reporter System to Evaluate DROSHA Enzymatic Activity. Methods in Molecular Biology, 2014, 1095, 87-93.	0.4	4
47	Advances in treating chronic lymphocytic leukemia. F1000prime Reports, 2014, 6, 65.	5.9	13
48	Thalidomide Regulation of NF-κB Proteins Limits Tregs Activity in Chronic Lymphocytic Leukemia. Advances in Clinical and Experimental Medicine, 2014, 23, 25-32.	0.6	12
49	NOTCH1, SF3B1, and TP53 mutations in fludarabine-refractory CLL patients treated with alemtuzumab: results from the CLL2H trial of the GCLLSG. Blood, 2013, 122, 1266-1270.	0.6	68
50	Missing the notch in NOTCH1. Leukemia and Lymphoma, 2013, 54, 1579-1580.	0.6	0
51	Epigenetic Upregulation of IncRNAs at 13q14.3 in Leukemia Is Linked to the In Cis Downregulation of a Gene Cluster That Targets NF-kB. PLoS Genetics, 2013, 9, e1003373.	1.5	134
52	TCL1A and ATM are co-expressed in chronic lymphocytic leukemia cells without deletion of 11q. Haematologica, 2013, 98, 269-273.	1.7	5
53	Circulating microRNAs in hematological diseases: principles, challenges, and perspectives. Blood, 2013, 121, 4977-4984.	0.6	118
54	Telomere length in mantle cell lymphoma. Blood, 2013, 121, 1184-1187.	0.6	19

#	Article	IF	CITATIONS
55	Germline Allele-Specific Expression of DAPK1 in Chronic Lymphocytic Leukemia. PLoS ONE, 2013, 8, e55261.	1.1	24
56	CDX2-driven leukemogenesis involves KLF4 repression and deregulated PPARÎ ³ signaling. Journal of Clinical Investigation, 2013, 123, 299-314.	3.9	47
57	Telomere Length and Treatment Outcome In Chronic Lymphocytic Leukemia: Results From The CLL8 Trial. Blood, 2013, 122, 671-671.	0.6	3
58	Heterogeneity and Evolution Of DNA Methylation In Chronic Lymphocytic Leukemia. Blood, 2013, 122, 1626-1626.	0.6	0
59	ADARB1 Is Involved In a Reduced Maturation Of The miR15a/Mir-16-1 Family In Chronic Lymphocytic Leukemia. Blood, 2013, 122, 1252-1252.	0.6	1
60	CLL and deletion 13q14: merely the miRs?. Blood, 2012, 119, 2974-2975.	0.6	7
61	331 The Microenvironment Regulates Responses to Hepsin Overexpression in Prostate Cancer Cells. European Journal of Cancer, 2012, 48, S81.	1.3	1
62	High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations. Blood, 2012, 120, 4783-4794.	0.6	179
63	Impact of serum storage conditions on microRNA stability. Leukemia, 2012, 26, 2414-2416.	3.3	133
64	Quantitative DNA Methylation Analysis Identifies a Single CpG Dinucleotide Important for ZAP-70 Expression and Predictive of Prognosis in Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2012, 30, 2483-2491.	0.8	120
65	Gene Mutations and Treatment Outcome in Chronic Lymphocytic Leukemia: Results From the CLL8 Trial. Blood, 2012, 120, 433-433.	0.6	7
66	NOTCH1, SF3B1 and TP53 Mutations in Fludarabine-Refractory CLL Patients Treated with Alemtuzumab: Results From the CLL2H Trial of the Gcllsg. Blood, 2012, 120, 710-710.	0.6	1
67	Programmed Death-1 and Its Ligand Are Novel Immunotolerant Molecules Expressed on Leukemic B Cells in Chronic Lymphocytic Leukemia. PLoS ONE, 2012, 7, e35178.	1.1	68
68	IL4 and CD40L Prevent Apoptosis of Chronic Lymphocytic Leukemia Cells Via Intracellular pSTAT6 and NFkB Signaling and Not Via Receptor Kinetics. Blood, 2012, 120, 3893-3893.	0.6	0
69	Microrna Expression in Fludarabine-Refractory CLL Implicates Independent Mechanisms of Resistance and Is Associated with Response and Progression Free Survival After Alemtuzumab Treatment: Results From the CLL2H Trial Blood, 2012, 120, 2874-2874.	0.6	0
70	DNA damage–induced transcriptional program in CLL: biological and diagnostic implications for functional p53 testing. Blood, 2011, 117, 1622-1632.	0.6	35
71	Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells. Neoplasia, 2011, 13, 579-IN2.	2.3	27
72	Immune modulatory agents in hematopoietic malignancies. Cancer Treatment Reviews, 2011, 37, S2-S7.	3.4	1

#	Article	IF	CITATIONS
73	In-vivo quantification of primary microRNA processing by Drosha with a luciferase based system. Biochemical and Biophysical Research Communications, 2011, 406, 501-505.	1.0	21
74	Genetics of Chronic Lymphocytic Leukemia. Clinics in Laboratory Medicine, 2011, 31, 649-658.	0.7	7
75	Chronic lymphocytic leukemia - genomics lead the way. Haematologica, 2011, 96, 1402-1405.	1.7	6
76	Toward chemotherapy-free treatment of CLL. Blood, 2011, 118, 3451-3452.	0.6	1
77	Nurseâ€like cells show deregulated expression of genes involved in immunocompetence. British Journal of Haematology, 2011, 154, 349-356.	1.2	32
78	Non-malignant B cells and chronic lymphocytic leukemia cells induce a pro-survival phenotype in CD14+ cells from peripheral blood. Leukemia, 2011, 25, 722-726.	3.3	13
79	Importance of genetics in chronic lymphocytic leukemia. Blood Reviews, 2011, 25, 131-137.	2.8	75
80	Treating chronic lymphocytic leukemia with thalidomide and lenalidomide. Expert Opinion on Pharmacotherapy, 2011, 12, 2857-2864.	0.9	19
81	Myeloid Leukemogenesis Driven by Aberrant CDX2 Expression Involves Transcriptional Repression of KLF4 and Deregulated PPARÎ ³ Signaling. Blood, 2011, 118, 1355-1355.	0.6	0
82	Protein expression analysis of chronic lymphocytic leukemia defines the effect of genetic aberrations and uncovers a correlation of CDK4, P27 and P53 with hierarchical risk. Haematologica, 2010, 95, 1880-1888.	1.7	5
83	Highâ€throughput detection of nuclear factorâ€kappaB activity using a sensitive oligoâ€based chemiluminescent enzymeâ€linked immunosorbent assay. International Journal of Cancer, 2010, 127, 404-411.	2.3	25
84	Lenalidomide treatment of chronic lymphocytic leukaemia patients reduces regulatory T cells and induces Th17 T helper cells. British Journal of Haematology, 2010, 148, 948-950.	1.2	55
85	<i>SYK</i> carries no activating point mutations in patients with chronic lymphocytic leukaemia (CLL). British Journal of Haematology, 2010, 150, 633-636.	1.2	12
86	From pathogenesis to treatment of chronic lymphocytic leukaemia. Nature Reviews Cancer, 2010, 10, 37-50.	12.8	503
87	Biological diversity and risk-adapted treatment of chronic lymphocytic leukemia. Haematologica, 2010, 95, 1441-1443.	1.7	11
88	Moving from prognostic to predictive factors in chronic lymphocytic leukaemia (CLL). Best Practice and Research in Clinical Haematology, 2010, 23, 71-84.	0.7	55
89	Maturation of the miR15a/miR16-1 Family Is Impaired In Chronic Lymphocytic Leukaemia. Blood, 2010, 116, 53-53.	0.6	0
90	miR-34a as part of the resistance network in chronic lymphocytic leukemia. Blood, 2009, 113, 3801-3808.	0.6	258

#	Article	IF	CITATIONS
91	A Novel Paradigm to Trigger Apoptosis in Chronic Lymphocytic Leukemia. Cancer Research, 2009, 69, 8977-8986.	0.4	55
92	The candidate immunotherapeutical target, the receptor for hyaluronic acid-mediated motility, is associated with proliferation and shows prognostic value in B-cell chronic lymphocytic leukemia. Leukemia, 2009, 23, 519-527.	3.3	31
93	Chronic lymphocytic leukemia and 13q14: miRs and more. Leukemia and Lymphoma, 2009, 50, 502-505.	0.6	42
94	Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial. Blood, 2009, 114, 2589-2597.	0.6	253
95	Treatment resistance in chronic lymphocytic leukemia–the role of the p53 pathway. Leukemia and Lymphoma, 2009, 50, 510-513.	0.6	35
96	Comprehensive Protein Expression Analysis of Chronic Lymphocytic Leukemia Uncovers a Correlation of CDK4, P27 and P53 with Hierarchical Risk and Suggests a Dichotomy of Apoptosis and Proliferation Blood, 2009, 114, 1255-1255.	0.6	0
97	A Novel Paradigm to Trigger Apoptosis in Chronic Lymphocytic Leukemia Blood, 2009, 114, 731-731.	0.6	Ο
98	Detection of NFκB Activity in Primary CLL Cells Using a Sensitive Oligo-Based Chemiluminescent ELISA Blood, 2009, 114, 4709-4709.	0.6	0
99	Off-target effects of siRNA specific for GFP. BMC Molecular Biology, 2008, 9, 60.	3.0	76
100	Molecular diagnostics in chronic lymphocytic leukemia – Pathogenetic and clinical implications. Leukemia and Lymphoma, 2008, 49, 864-873.	0.6	37
101	Mir-34a as Part of the Chemotherapy Resistance Network in Chronic Lymphocytic Leukemia Blood, 2008, 112, 1209-1209.	0.6	1
102	The Response to DNA Damage in CLL Cells Is Partly Determined by the Type of TP53 Mutation and Genomic Aberrations. Blood, 2008, 112, 3119-3119.	0.6	0
103	Epimutation of the Tumor Suppressor Mechanism in 13q14.3 Involves Monoallelic Expression, Non-Coding RNA Genes and Deregulation of NFkB Signalling. Blood, 2008, 112, 783-783.	0.6	Ο
104	Analysis of 11q22–q23 deletion target genes in B-cell chronic lymphocytic leukaemia: Evidence for a pathogenic role of NPAT, CUL5, and PPP2R1B. European Journal of Cancer, 2007, 43, 1328-1335.	1.3	62
105	Expression analysis of imbalanced genes in prostate carcinoma using tissue microarrays. British Journal of Cancer, 2007, 96, 82-88.	2.9	77
106	Functional screening for proapoptotic genes by reverse transfection cell array technology. Genomics, 2006, 87, 665-672.	1.3	55
107	Distinct gene expression patterns in chronic lymphocytic leukemia defined by usage of specific VH genes. Blood, 2006, 107, 2090-2093.	0.6	54
108	Frequent amplifications and abundant expression ofTRIO,NKD2, andIRX2 in soft tissue sarcomas. Genes Chromosomes and Cancer, 2006, 45, 829-838.	1.5	52

#	Article	IF	CITATIONS
109	Ala228 variant of trail receptor 1 affecting the ligand binding site is associated with chronic lymphocytic leukemia, mantle cell lymphoma, prostate cancer, head and neck squamous cell carcinoma and bladder cancer. International Journal of Cancer, 2006, 118, 1831-1835.	2.3	43
110	Allelic silencing at the tumor-suppressor locus 13q14.3 suggests an epigenetic tumor-suppressor mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7741-7746.	3.3	54
111	Reduced Expression of CAMTA1 Correlates with Adverse Outcome in Neuroblastoma Patients. Clinical Cancer Research, 2006, 12, 131-138.	3.2	67
112	Translocation t(X;11)(q13;q23) in B-cell chronic lymphocytic leukemia disrupts two novel genes. Genes Chromosomes and Cancer, 2005, 42, 128-143.	1,5	34
113	Evidence for Distinct Pathomechanisms in Genetic Subgroups of Chronic Lymphocytic Leukemia Revealed by Quantitative Expression Analysis of Cell Cycle, Activation, and Apoptosis-Associated Genes. Journal of Clinical Oncology, 2005, 23, 3780-3792.	0.8	66
114	Efficiency of the algorithms for the calculation of Slater molecular integrals in polyatomic molecules. Journal of Computational Chemistry, 2004, 25, 1987-1994.	1.5	54
115	High ZAP-70 and Differential Expression of B-Cell Receptor Related Genes in Chronic Lymphocytic Leukemia with V3-21 Gene Usage Blood, 2004, 104, 773-773.	0.6	0
116	Down-regulation of candidate tumor suppressor genes within chromosome band 13q14.3 is independent of the DNA methylation pattern in B-cell chronic lymphocytic leukemia. Blood, 2002, 99, 4116-4121.	0.6	91
117	Evidence for distinct pathomechanisms in B-cell chronic lymphocytic leukemia and mantle cell lymphoma by quantitative expression analysis of cell cycle and apoptosis-associated genes. Blood, 2002, 99, 4554-4561.	0.6	125
118	B-cell neoplasia associated gene with multiple splicing (BCMS): the candidate B-CLL gene on 13q14 comprises more than 560 kb covering all critical regions. Human Molecular Genetics, 2001, 10, 1275-1285.	1.4	81
119	BCMSUN, a candidate gene for B-cell chronic lymphocytic leukemia and mantle-cell lymphoma, has an independently expressed homolog on 1p22-p31,BCMSUN-like. International Journal of Cancer, 2000, 88, 692-697.	2.3	15
120	BCL10 is not the gene inactivated by mutation in the 1p22 deletion region in mantle cell lymphoma. Leukemia, 2000, 14, 1490-1492.	3.3	14