Eugenia Kharlampieva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7289302/publications.pdf

Version: 2024-02-01

105	6,001	48	75
papers	citations	h-index	g-index
110	110	110	7685
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Anisotropic Particles through Multilayer Assembly. Macromolecular Bioscience, 2022, 22, e2100328.	2.1	14
2	Poly(<i>N</i> -vinylpyrrolidone)- <i>block</i> -Poly(dimethylsiloxane)- <i>block</i> -Poly(<i>N</i> -vinylpyrrolidone) Triblock Copolymer Polymersomes for Delivery of PARP1 siRNA to Breast Cancers. ACS Applied Bio Materials, 2022, 5, 1670-1682.	2.3	13
3	Dually Responsive Poly(N-vinylcaprolactam)-b-poly(dimethylsiloxane)-b-poly(N-vinylcaprolactam) Polymersomes for Controlled Delivery. Molecules, 2022, 27, 3485.	1.7	6
4	Two-Dimensional and Three-Dimensional Ultrathin Multilayer Hydrogels through Layer-by-Layer Assembly. Langmuir, 2022, 38, 7867-7888.	1.6	6
5	Polymeric Particulates of Controlled Rigidity for Biomedical Applications. ACS Applied Polymer Materials, 2021, 3, 2274-2289.	2.0	9
6	Xenotransplantation of tannic acidâ€encapsulated neonatal porcine islets decreases proinflammatory innate immune responses. Xenotransplantation, 2021, 28, e12706.	1.6	10
7	Free-Standing Thin Hydrogels: Effects of Composition and pH-Dependent Hydration on Mechanical Properties. ACS Applied Polymer Materials, 2021, 3, 3960-3971.	2.0	7
8	Temperature controlled transformations of giant unilamellar vesicles of amphiphilic triblock copolymers synthesized via microfluidic mixing. Applied Surface Science Advances, 2021, 5, 100101.	2.9	5
9	Complete pH-Dependent Shape Recovery in Cubical Hydrogel Capsules after Large Osmotic Deformations. Macromolecules, 2021, 54, 9712-9723.	2.2	5
10	Self-Assemblies of Thermoresponsive Poly(<i>N</i> -vinylcaprolactam) Polymers for Applications in Biomedical Field. ACS Applied Polymer Materials, 2020, 2, 26-39.	2.0	43
11	Photocatalytic Nanocomposite Microsponges of Polylactide–Titania for Chemical Remediation in Water. ACS Applied Polymer Materials, 2020, 2, 5188-5197.	2.0	6
12	Multilayer Microcapsules with Shell-Chelated ⁸⁹ Zr for PET Imaging and Controlled Delivery. ACS Applied Materials & Interfaces, 2020, 12, 56792-56804.	4.0	16
13	Architecture of Hydrated Multilayer Poly(methacrylic acid) Hydrogels: The Effect of Solution pH. ACS Applied Polymer Materials, 2020, 2, 2260-2273.	2.0	7
14	Photo-Cross-Linked Hydrogel Replication of Small Objects: A Multistep Final Project for Undergraduate Polymer Laboratories. Journal of Chemical Education, 2020, 97, 1637-1643.	1.1	4
15	Localized Immunosuppression With Tannic Acid Encapsulation Delays Islet Allograft and Autoimmune-Mediated Rejection. Diabetes, 2020, 69, 1948-1960.	0.3	25
16	Dampening Antigen-Specific T Cell Responses with Antigens Encapsulated in Polyphenolic Microcapsules. ImmunoHorizons, 2020, 4, 530-545.	0.8	5
17	Shape Recovery of Spherical Hydrogen-Bonded Multilayer Capsules after Osmotically Induced Deformation. Langmuir, 2019, 35, 10910-10919.	1.6	10
18	Temperature-Responsive Polymersomes of Poly(3-methyl- <i>N</i> Vinylcaprolactam)- <i>block</i> Poly(3-methyl- <i>N</i> Vinylcaprolactam)- <i>Doxorubicin-Induced Cardiotoxicity. Biomacromolecules, 2019, 20, 3989-4000.</i>	2.6	31

#	Article	IF	CITATIONS
19	Carbohydrate Sensing Using Water-Soluble Poly(methacrylic) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 747 T 1341-1349.	d (acid)- <i 2.0</i 	>co-3-(18
20	Effect of Temperature and Hydrophilic Ratio on the Structure of Poly(<i>N</i> -vinylcaprolactam)- <i>block</i> -poly(dimethylsiloxane)- <i>block</i> -poly(<i>N</i> -vinylcaprolactam) Polymersomes. ACS Applied Polymer Materials, 2019, 1, 722-736.	2.0	15
21	Stability of the Na ⁺ Form of the Human Telomeric G-Quadruplex: Role of Adenines in Stabilizing G-Quadruplex Structure. ACS Omega, 2018, 3, 844-855.	1.6	25
22	Manganoporphyrin-Polyphenol Multilayer Capsules as Radical and Reactive Oxygen Species (ROS) Scavengers. Chemistry of Materials, 2018, 30, 344-357.	3.2	36
23	Neutron scattering in the biological sciences: progress and prospects. Acta Crystallographica Section D: Structural Biology, 2018, 74, 1129-1168.	1.1	47
24	Encapsulation and Ultrasound-Triggered Release of G-Quadruplex DNA in Multilayer Hydrogel Microcapsules. Polymers, 2018, 10, 1342.	2.0	26
25	Multilayer Hydrogel Capsules of Interpenetrated Network for Encapsulation of Small Molecules. Langmuir, 2018, 34, 11832-11842.	1.6	22
26	Peptide-Functionalized Hydrogel Cubes for Active Tumor Cell Targeting. Biomacromolecules, 2018, 19, 4084-4097.	2.6	20
27	Ultrasoundâ€Triggered Delivery of Anticancer Therapeutics from MRIâ€Visible Multilayer Microcapsules. Advanced Therapeutics, 2018, 1, 1800051.	1.6	30
28	Islet encapsulation with polyphenol coatings decreases pro-inflammatory chemokine synthesis and T cell trafficking. Biomaterials, 2017, 128, 19-32.	5.7	69
29	Theranostic Multilayer Capsules for Ultrasound Imaging and Guided Drug Delivery. ACS Nano, 2017, 11, 3135-3146.	7.3	88
30	Highly efficient delivery of potent anticancer iminoquinone derivative by multilayer hydrogel cubes. Acta Biomaterialia, 2017, 58, 386-398.	4.1	37
31	Aqueous RAFT Synthesis of Glycopolymers for Determination of Saccharide Structure and Concentration Effects on Amyloid \hat{l}^2 Aggregation. Biomacromolecules, 2017, 18, 3359-3366.	2.6	22
32	Resolution Agonist 15-epi-Lipoxin A4 Programs Early Activation of Resolving Phase in Post-Myocardial Infarction Healing. Scientific Reports, 2017, 7, 9999.	1.6	56
33	Temperature-responsive nanogel multilayers of poly(N-vinylcaprolactam) for topical drug delivery. Journal of Colloid and Interface Science, 2017, 506, 589-602.	5.0	67
34	Small Angle Scattering for Pharmaceutical Applications: From Drugs to Drug Delivery Systems. Advances in Experimental Medicine and Biology, 2017, 1009, 239-262.	0.8	7
35	Polyphenolic Polymersomes of Temperature-Sensitive Poly($\langle i \rangle N \langle i \rangle$ -vinylpyrrolidone) for Anticancer Therapy. Biomacromolecules, 2017, 18, 2552-2563.	2.6	48
36	Shaped stimuli-responsive hydrogel particles: syntheses, properties and biological responses. Journal of Materials Chemistry B, 2017, 5, 9-35.	2.9	71

#	Article	IF	CITATIONS
37	Stratified Temperature-Responsive Multilayer Hydrogels of Poly($\langle i \rangle N \langle i \rangle - v$ inylpyrrolidone) and Poly($\langle i \rangle N \langle i \rangle - v$ inylcaprolactam): Effect of Hydrogel Architecture on Properties. Macromolecules, 2016, 49, 6953-6964.	2.2	27
38	Melting of gelatin gels confined to silica nanopores. Physical Chemistry Chemical Physics, 2016, 18, 29056-29063.	1.3	11
39	Shape-Adaptable Polymeric Particles for Controlled Delivery. Macromolecules, 2016, 49, 8373-8386.	2.2	48
40	Development of gellan gum containing formulations for transdermal drug delivery: Component evaluation and controlled drug release using temperature responsive nanogels. International Journal of Pharmaceutics, 2016, 509, 465-476.	2.6	67
41	Diabetes: Hydrogen-Bonded Multilayers of Tannic Acid as Mediators of T-Cell Immunity (Adv.) Tj ETQq1 1 0.7843	14 ₃ .gBT /0	Overlock 10 T
42	Cubical Shape Enhances the Interaction of Layerâ€byâ€Layer Polymeric Particles with Breast Cancer Cells. Advanced Healthcare Materials, 2015, 4, 2657-2666.	3.9	60
43	Intracellular Degradable Hydrogel Cubes and Spheres for Anti-Cancer Drug Delivery. ACS Applied Materials & Drug Delivery. ACS Applied &	4.0	72
44	Tuning assembly and enzymatic degradation of silk/poly(N-vinylcaprolactam) multilayers via molecular weight and hydrophobicity. Soft Matter, 2015, 11, 5133-5145.	1.2	19
45	Temperature-Sensitive Polymersomes for Controlled Delivery of Anticancer Drugs. Chemistry of Materials, 2015, 27, 7945-7956.	3.2	118
46	Thermoresponsive Micelles from Double LCST-Poly(3-methyl- <i>N</i> -vinylcaprolactam) Block Copolymers for Cancer Therapy. ACS Macro Letters, 2015, 4, 308-311.	2.3	66
47	Minireview: Directed Differentiation and Encapsulation of Islet β-Cells—Recent Advances and Future Considerations. Molecular Endocrinology, 2015, 29, 1388-1399.	3.7	12
48	Nanostructured highly-swollen hydrogels: Complexation with amino acids through copper (II) ions. Polymer, 2015, 74, 94-107.	1.8	13
49	Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight. Macromolecules, 2015, 48, 8585-8593.	2.2	18
50	Hydrogenâ€Bonded Multilayers of Tannic Acid as Mediators of T ell Immunity. Advanced Healthcare Materials, 2015, 4, 686-694.	3.9	86
51	Temperature-responsive properties of poly(N-vinylcaprolactam) multilayer hydrogels in the presence of Hofmeister anions. Materials Research Express, 2014, 1, 035039.	0.8	29
52	Encapsulation of anticancer drug by hydrogen-bonded multilayers of tannic acid. Soft Matter, 2014, 10, 9237-9247.	1.2	114
53	pH-responsive hydrogel cubes for release of doxorubicin in cancer cells. Journal of Materials Chemistry B, 2014, 2, 2494-2507.	2.9	61
54	Internalization of Red Blood Cell-Mimicking Hydrogel Capsules with pH-Triggered Shape Responses. ACS Nano, 2014, 8, 5725-5737.	7.3	90

#	Article	IF	CITATIONS
55	Synthesis and self-assembly of thermosensitive double-hydrophilic poly(<i>N</i> -vinylcaprolactam)- <i>b</i> -poly(<i>N</i> -vinyl-2-pyrrolidone) diblock copolymers. Journal of Polymer Science Part A, 2014, 52, 2725-2737.	2.5	46
56	Highly swellable ultrathin poly(4-vinylpyridine) multilayer hydrogels with pH-triggered surface wettability. Soft Matter, 2013, 9, 9420.	1.2	35
57	Biocompatible Shaped Particles from Dried Multilayer Polymer Capsules. Biomacromolecules, 2013, 14, 3830-3841.	2.6	88
58	Tailoring Architecture of Nanothin Hydrogels: Effect of Layering on pH-Triggered Swelling. ACS Macro Letters, 2013, 2, 226-229.	2.3	28
59	Tunable pH and temperature response of weak polyelectrolyte brushes: role of hydrogen bonding and monomer hydrophobicity. Soft Matter, 2013, 9, 5464.	1.2	72
60	pH-triggered shape response of cubical ultrathin hydrogel capsules. Soft Matter, 2012, 8, 9828.	1.2	49
61	Thermosensitive Multilayer Hydrogels of Poly($\langle i \rangle N \langle j \rangle$ -vinylcaprolactam) as Nanothin Films and Shaped Capsules. Chemistry of Materials, 2012, 24, 3707-3719.	3.2	91
62	Hydrogen-Bonded Multilayers of Silk Fibroin: From Coatings to Cell-Mimicking Shaped Microcontainers. ACS Macro Letters, 2012, 1, 384-387.	2.3	35
63	Silk Layering As Studied with Neutron Reflectivity. Langmuir, 2012, 28, 11481-11489.	1.6	15
64	Ultrathin Polymeric Coatings Based on Hydrogenâ€Bonded Polyphenol for Protection of Pancreatic Islet Cells. Advanced Functional Materials, 2012, 22, 3389-3398.	7.8	141
65	Localized entrapment of green fluorescent protein within nanostructured polymer films. Soft Matter, 2011, 7, 11453.	1.2	9
66	Cell Surface Engineering with Polyelectrolyte Multilayer Thin Films. Journal of the American Chemical Society, 2011, 133, 7054-7064.	6.6	178
67	Thin Film Assembly of Spider Silk-like Block Copolymers. Langmuir, 2011, 27, 1000-1008.	1.6	39
68	Shape switching of hollow layer-by-layer hydrogel microcontainers. Chemical Communications, 2011, 47, 8352.	2.2	55
69	Flexible Silk–Inorganic Nanocomposites: From Transparent to Highly Reflective. Advanced Functional Materials, 2010, 20, 840-846.	7.8	82
70	Metalized Porous Interference Lithographic Microstructures via Biofunctionalization. Advanced Materials, 2010, 22, 1369-1373.	11.1	17
71	Anisotropic Micro―and Nanoâ€Capsules. Macromolecular Rapid Communications, 2010, 31, 2041-2046.	2.0	66
72	Biodegradable self-reporting nanocomposite films of poly(lactic acid) nanoparticles engineered by layer-by-layer assembly. Polymer, 2010, 51, 4127-4139.	1.8	43

#	Article	IF	Citations
73	Secondary structure of silaffin at interfaces and titania formation. Journal of Materials Chemistry, 2010, 20, 5242.	6.7	30
74	Co-cross-linking Silk Matrices with Silica Nanostructures for Robust Ultrathin Nanocomposites. ACS Nano, 2010, 4, 7053-7063.	7.3	66
7 5	pH-Controlled Assembly and Properties of LbL Membranes from Branched Conjugated Poly(alkoxythiophene sulfonate) and Various Polycations. Langmuir, 2010, 26, 7138-7147.	1.6	20
76	pH-responsive photoluminescent LbL hydrogels with confined quantum dots. Soft Matter, 2010, 6, 800-807.	1.2	66
77	Replication of anisotropic dispersed particulates and complex continuous templates. Journal of Materials Chemistry, 2010, 20, 6587.	6.7	56
78	Responsive microcapsule reactors based on hydrogen-bonded tannic acid layer-by-layer assemblies. Soft Matter, 2010, 6, 3596.	1.2	243
79	Redox-Active Ultrathin Template of Silk Fibroin: Effect of Secondary Structure on Gold Nanoparticle Reduction. Chemistry of Materials, 2009, 21, 2696-2704.	3.2	49
80	Proteinâ€Enabled Synthesis of Monodisperse Titania Nanoparticles On and Within Polyelectrolyte Matrices. Advanced Functional Materials, 2009, 19, 2303-2311.	7.8	31
81	Layerâ€by‣ayer Hydrogenâ€Bonded Polymer Films: From Fundamentals to Applications. Advanced Materials, 2009, 21, 3053-3065.	11.1	377
82	Bimetallic Nanostructures as Active Raman Markers: Goldâ€Nanoparticle Assembly on 1D and 2D Silver Nanostructure Surfaces. Small, 2009, 5, 2460-2466.	5.2	58
83	Spin-Assisted Layer-by-Layer Assembly: Variation of Stratification as Studied with Neutron Reflectivity. Langmuir, 2009, 25, 14017-14024.	1.6	97
84	pH-Responsive Layered Hydrogel Microcapsules as Gold Nanoreactors. Chemistry of Materials, 2009, 21, 2158-2167.	3.2	69
85	Responsive Hybrid Nanotubes Composed of Block Copolymer and Gold Nanoparticles. Macromolecules, 2009, 42, 5781-5785.	2.2	36
86	Multilayer-derived, ultrathin, stimuli-responsive hydrogels. Soft Matter, 2009, 5, 4077.	1.2	89
87	HYDROGEN-BONDED LAYER-BY-LAYER POLYMER FILMS AND CAPSULES. , 2009, , 323-362.		2
88	Bioenabled Surfaceâ€Mediated Growth of Titania Nanoparticles. Advanced Materials, 2008, 20, 3274-3279.	11.1	64
89	Ultrathin Layer-by-Layer Hydrogels with Incorporated Gold Nanorods as pH-Sensitive Optical Materials. Chemistry of Materials, 2008, 20, 7474-7485.	3.2	141
90	Hydrogen-Bonded Polymer Multilayers Probed by Neutron Reflectivity. Langmuir, 2008, 24, 11346-11349.	1.6	66

#	Article	IF	CITATIONS
91	Polyaminoacid-Induced Growth of Metal Nanoparticles on Layer-by-Layer Templates. Chemistry of Materials, 2008, 20, 5822-5831.	3.2	49
92	pH-Induced Release of Polyanions from Multilayer Films. Physical Review Letters, 2008, 100, 128303.	2.9	51
93	Amphoteric Surface Hydrogels Derived from Hydrogen-Bonded Multilayers:  Reversible Loading of Dyes and Macromolecules. Langmuir, 2007, 23, 175-181.	1.6	76
94	Hydrogen-Bonded Multilayers of Poly(carboxybetaine)s. Macromolecules, 2007, 40, 6967-6972.	2.2	23
95	Electrostatic Layer-by-Layer Self-Assembly of Poly(carboxybetaine)s:Â Role of Zwitterions in Film Growth. Macromolecules, 2007, 40, 3663-3668.	2.2	50
96	Where Polyelectrolyte Multilayers and Polyelectrolyte Complexes Meet. Macromolecules, 2006, 39, 8873-8881.	2.2	261
97	Poly(methacrylic acid) Hydrogel Films and Capsules:Â Response to pH and Ionic Strength, and Encapsulation of Macromolecules. Chemistry of Materials, 2006, 18, 328-336.	3.2	225
98	Hydrogenâ€Bonded Layerâ€byâ€Layer Polymer Films. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 377-395.	2.2	148
99	Hydrogen-Bonded Multilayers of Thermoresponsive Polymers. Macromolecules, 2005, 38, 10523-10531.	2.2	133
100	Multilayers of a Globular Protein and a Weak Polyacid:Â Role of Polyacid Ionization in Growth and Decomposition in Salt Solutions. Biomacromolecules, 2005, 6, 1782-1788.	2.6	118
101	Competition of Hydrogen-Bonding and Electrostatic Interactions within Hybrid Polymer Multilayers. Langmuir, 2004, 20, 10712-10717.	1.6	25
102	Release of a Dye from Hydrogen-Bonded and Electrostatically Assembled Polymer Films Triggered by Adsorption of a Polyelectrolyte. Langmuir, 2004, 20, 9677-9685.	1.6	63
103	Salt-Induced Multilayer Growth:Â Correlation with Phase Separation in Solution. Macromolecules, 2004, 37, 8400-8406.	2.2	58
104	Ionization and pH Stability of Multilayers Formed by Self-Assembly of Weak Polyelectrolytes. Langmuir, 2003, 19, 1235-1243.	1.6	157
105	Polyelectrolyte Multilayers of Weak Polyacid and Cationic Copolymer:  Competition of Hydrogen-Bonding and Electrostatic Interactions. Macromolecules, 2003, 36, 9950-9956.	2.2	72