Karin Kirschner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7289192/publications.pdf

Version: 2024-02-01

759233 642732 32 577 12 23 h-index citations g-index papers 34 34 34 895 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Wt1 haploinsufficiency induces browning of epididymal fat and alleviates metabolic dysfunction in mice on high-fat diet. Diabetologia, 2022, 65, 528-540.	6.3	3
2	Immunosuppressive calcineurin inhibitor cyclosporine AÂinduces proapoptotic endoplasmic reticulum stress in renal tubular cells. Journal of Biological Chemistry, 2022, 298, 101589.	3.4	7
3	Adaptation of the Oxygen Sensing System during Lung Development. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	4.0	3
4	WT1 in Adipose Tissue: From Development to Adult Physiology. Frontiers in Cell and Developmental Biology, 2022, 10, 854120.	3.7	4
5	Autosomal dominant polycystic kidney disease in absence of renal cyst formation illustrates genetic interaction between WT1 and PKD1. Journal of Medical Genetics, 2021, 58, 140-144.	3.2	2
6	The circadian clock regulates rhythmic erythropoietin expression in the murine kidney. Kidney International, 2021, 100, 1071-1080.	5.2	4
7	Reduce, replace, refine—Animal experiments. Acta Physiologica, 2021, 233, e13726.	3.8	6
8	WT1 regulates HOXB9 gene expression in a bidirectional way. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2021, 1864, 194764.	1.9	1
9	Polyamines, metabolites and metabolomics. Acta Physiologica, 2020, 229, e13480.	3.8	1
10	ExActa HIF prolyl hydroxylase inhibitors—The new lifestyle drug?. Acta Physiologica, 2019, 227, e13370.	3.8	4
11	Deletion of an intronic HIF-2α binding site suppresses hypoxia-induced WT1 expression. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 71-83.	1.9	9
12	Alternative preâ€∢scp>mRNA splicing. Acta Physiologica, 2018, 222, e13053.	3.8	3
13	A dual role of miRâ€22 in rhabdomyolysisâ€induced acute kidney injury. Acta Physiologica, 2018, 224, e13102.	3.8	12
14	The Wilms tumor protein WT1 stimulates transcription of the gene encoding insulin-like growth factor binding protein 5 (IGFBP5). Gene, 2017, 619, 21-29.	2.2	5
15	Wilms tumor protein–dependent transcription of VEGF receptor 2 and hypoxia regulate expression of the testis-promoting gene Sox9 in murine embryonic gonads. Journal of Biological Chemistry, 2017, 292, 20281-20291.	3.4	11
16	Ex vivo cultures combined with vivo-morpholino induced gene knockdown provide a system to assess the role of WT1 and GATA4 during gonad differentiation. PLoS ONE, 2017, 12, e0176296.	2.5	13
17	The GYF domain protein CD2BP2 is critical for embryogenesis and podocyte function. Journal of Molecular Cell Biology, 2015, 7, 402-414.	3.3	9
18	Amine Oxidase Copper-containing 1 (AOC1) Is a Downstream Target Gene of the Wilms Tumor Protein, WT1, during Kidney Development. Journal of Biological Chemistry, 2014, 289, 24452-24462.	3.4	21

#	Article	IF	CITATIONS
19	Transcriptional Regulation by the Wilms Tumor Protein, Wt1, Suggests a Role of the Metalloproteinase Adamts16 in Murine Genitourinary Development. Journal of Biological Chemistry, 2013, 288, 18811-18824.	3.4	30
20	Nuclear Transport of Wilms′ Tumour Protein Wt1 Involves Importins α and β. Cellular Physiology and Biochemistry, 2012, 29, 223-232.	1.6	11
21	Oxygen-Dependent Gene Expression in Development and Cancer: Lessons Learned from the Wilms' Tumor Gene, WT1. Frontiers in Molecular Neuroscience, 2011, 4, 4.	2.9	23
22	Wilms' tumour protein Wt1 stimulates transcription of the gene encoding vascular endothelial cadherin. Pflugers Archiv European Journal of Physiology, 2010, 460, 1051-1061.	2.8	10
23	Wilms' tumor protein Wt1 regulates the Interleukinâ€10 (ILâ€10) gene. FEBS Letters, 2010, 584, 4665-4671.	2.8	15
24	Translational Regulation of the Human Achaete-scute Homologue-1 by Fragile X Mental Retardation Protein. Journal of Biological Chemistry, 2009, 284, 4255-4266.	3.4	51
25	The Wilms' tumor suppressor Wt1 activates transcription of the erythropoietin receptor in hematopoietic progenitor cells. FASEB Journal, 2008, 22, 2690-2701.	0.5	21
26	Wilms' tumor protein (â€"KTS) modulates renin gene transcription. Kidney International, 2008, 74, 458-466.	5.2	32
27	Fatty acid dependent regulation of renin transcription by nuclear hormone receptor HNFâ€4. FASEB Journal, 2008, 22, 735.9.	0.5	0
28	Hypoxia-inducible Factor-1 (HIF-1) Is a Transcriptional Activator of the TrkB Neurotrophin Receptor Gene. Journal of Biological Chemistry, 2007, 282, 14379-14388.	3.4	73
29	Wilms' Tumor Protein WT1(â€KTS) inhibits Renin gene transcription. FASEB Journal, 2007, 21, A896.	0.5	O
30	Wilms tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood, 2006, 107, 4282-4290.	1.4	71
31	The Wilms Tumor Suppressor Wt1 Promotes Cell Adhesion through Transcriptional Activation of the $\hat{l}_{\pm < i>}$ 4integrin $< i>$ Gene. Journal of Biological Chemistry, 2006, 281, 31930-31939.	3.4	42
32	A splice variant of the Wilms' tumour suppressor <i>Wt1</i> is required for normal development of the olfactory system. Development (Cambridge), 2005, 132, 1327-1336.	2.5	80